Patents by Inventor Robert J. Allen

Robert J. Allen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240127344
    Abstract: To represent broker interest in a security, a system receives broker interest to buy or sell a security at a first price with a minimum trade size, and receives an order with an order trade size. The system determines whether the order trade size is greater than the minimum trade size, and responsive to determining whether the order trade size is greater than the minimum trade size, the system trades at least part of the broker interest against the order if the order trade size is greater than the minimum trade size.
    Type: Application
    Filed: December 15, 2023
    Publication date: April 18, 2024
    Applicant: NYSE Group, Inc.
    Inventors: Roger Burkhardt, Anne E. Allen, Robert J. McSweeney, Louis G. Pastina
  • Patent number: 11949164
    Abstract: Register banks are used to allow for fast beam switching in a phased array system. Each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be pre-programmed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: April 2, 2024
    Assignee: Anokiwave, Inc.
    Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
  • Publication number: 20240093221
    Abstract: This disclosure provides recombinant DNA constructs and transgenic plants having enhanced traits such as increased yield, increased nitrogen use efficiency, and enhanced drought tolerance or water use efficiency. Transgenic plants may include field crops as well as plant propagules and progeny of such transgenic plants. Methods of making and using such transgenic plants are also provided. This disclosure also provides methods of producing seed from such transgenic plants, growing such seed, and selecting progeny plants with enhanced traits. Also disclosed are transgenic plants with altered phenotypes which are useful for screening and selecting transgenic events for the desired enhanced trait.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 21, 2024
    Inventors: Edwards M. Allen, Bettina Darveaux, Stephen M. Duff, Mary Fernandes, Barry S. Goldman, Cara L. Griffith, Balasulojini Karunanandaa, Saritha V. Kuriakose, Paul J. Loida, Linda L. Lutfiyya, Robert J. Meister, Monnanda S. Rajani, Dhanalakshmi Ramachandra, Elena A. Rice, Daniel Ruzicka, Anagha M. Sant, Jon J. Schmuke, Rebecca L. Thompson, Srikanth Babu Venkatachalayya, Tyamagondlu V. Venkatesh, Huai Wang, Xiao Yang, Qin Zeng, Jianmin Zhao
  • Patent number: 11932360
    Abstract: A tuned mass damper (TMD) system in combination with a floating offshore wind turbine (FOWT) platform includes a barge type FOWT platform having a hull configured to have a wind turbine tower mounted thereon. A TMD system is mounted in the hull and has a first TMD configured to operate at a first frequency, and a second TMD configured to operate at a second frequency different than the first frequency.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: March 19, 2024
    Assignee: University of Maine System Board of Trustees
    Inventors: Christopher K. Allen, Anthony M. Viselli, Andrew J. Goupee, Habib J. Dagher, Robert E. Berry, Jeffrey L. Lindner, Frederick S. Gant, John S. Townsend, Rebecca L. Williams
  • Patent number: 11858774
    Abstract: Folder systems and related methods are provided for accurately and efficiently folding a paper carrier that has a card attached without bending or dislodging the card from the carrier. A movable fold chute receives a portion of the carrier with the card attached and allows the carrier to fold while protecting the card portion of the carrier. The fold chute moves between different positions which allow the carrier to enter and exit through folding rollers along a generally straight paper path without forcing the cards around small radii, thereby preventing damage to the cards or causing them to separate from the carrier sheet.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: January 2, 2024
    Assignee: DMT Solutions Global Corporation
    Inventors: Brad Swinford, Robert J. Allen
  • Publication number: 20230154269
    Abstract: The invention is a modular card processing and attaching system configured to provide uninterrupted workflow in the feeding and subsequent attaching of cards to carriers for the formation of a mailpiece. The modular card processing and attaching system is further configured to be incorporated into a production mail inserter system, such that attached card and carrier mailpieces may be subsequently sorted and/or inserted into a mailable envelope or packages to be mailed.
    Type: Application
    Filed: November 18, 2022
    Publication date: May 18, 2023
    Inventors: Boris Rozenfeld, Anthony E. Yap, George Cruz, John Robert Masotta, Craig D. Richard, Robert J. Allen, Eddy Edel
  • Patent number: 11439143
    Abstract: A temperature sensor for monitoring an organ or tissue is configured to measure a temperature inside of a container configured to contain the organ or tissue. The temperature sensor is disposed exterior to the organ container and the temperature sensor is a non-contact temperature sensor. The temperature sensor may be part of an apparatus for perfusing, transporting, and/or storing an organ or tissue. A coolant container may have an aperture through which the temperature sensor measures a temperature of at least one of the organ or tissue or a perfusate fluid surrounding the organ or tissue. The temperature sensor is preferably an infrared temperature sensor. Multiple temperature sensors may be provided that measure the temperature organ or tissue or perfusate fluid surrounding the organ or tissue, for example in case one of the temperature sensors fails.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: September 13, 2022
    Assignee: LIFELINE SCIENTIFIC, INC.
    Inventors: David Kravitz, Christopher P. Steinman, David Pettinato, Richard K. Buck, John Stark, Robert J. Allen
  • Patent number: 11414294
    Abstract: Folder systems and related methods are provided for accurately and efficiently folding a paper carrier that has a card attached without bending or dislodging the card from the carrier. A movable fold chute receives a portion of the carrier with the card attached and allows the carrier to fold while protecting the card portion of the carrier. The fold chute moves between different positions which allow the carrier to enter and exit through folding rollers along a generally straight paper path without forcing the cards around small radii, thereby preventing damage to the cards or causing them to separate from the carrier sheet.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: August 16, 2022
    Assignee: DMT Solutions Global Corporation
    Inventors: Brad Swinford, Robert J. Allen
  • Publication number: 20220242689
    Abstract: Folder systems and related methods are provided for accurately and efficiently folding a paper carrier that has a card attached without bending or dislodging the card from the carrier. A movable fold chute receives a portion of the carrier with the card attached and allows the carrier to fold while protecting the card portion of the carrier. The fold chute moves between different positions which allow the carrier to enter and exit through folding rollers along a generally straight paper path without forcing the cards around small radii, thereby preventing damage to the cards or causing them to separate from the carrier sheet.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 4, 2022
    Inventors: Brad Swinford, Robert J. Allen
  • Publication number: 20210198076
    Abstract: Folder systems and related methods are provided for accurately and efficiently folding a paper carrier that has a card attached without bending or dislodging the card from the carrier. A movable fold chute receives a portion of the carrier with the card attached and allows the carrier to fold while protecting the card portion of the carrier. The fold chute moves between different positions which allow the carrier to enter and exit through folding rollers along a generally straight paper path without forcing the cards around small radii, thereby preventing damage to the cards or causing them to separate from the carrier sheet.
    Type: Application
    Filed: December 31, 2019
    Publication date: July 1, 2021
    Inventors: Brad Swinford, Robert J. Allen
  • Patent number: 10949593
    Abstract: A method of performing transistor simulation with improved sensitivity to parasitic by model order reduction in transistor-level timing is disclosed. The method includes reducing a number of derivative calculations during transistor simulation by representing parasitics as a reduced-order model, wherein the reducing includes: compressing the parasitics to a reduced-order model; simulating with load which is replaced with the reduced-order model; differentiating results of the simulation with respect to reduced-order model parameters; differentiating parameters of the reduced-order model with respect to parasitic values; differentiating the parasitic values with respect to statistical parameters; and computing the differential results of the simulation with respect to the statistical parameters via chain ruling.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: March 16, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert J. Allen, Yanai Danan, Vasant Rao, Jeffrey P. Soreff, Xin Zhao
  • Publication number: 20190332735
    Abstract: A method of performing transistor simulation with improved sensitivity to parasitic by model order reduction in transistor-level timing is disclosed. The method includes reducing a number of derivative calculations during transistor simulation by representing parasitics as a reduced-order model, wherein the reducing includes: compressing the parasitics to a reduced-order model; simulating with load which is replaced with the reduced-order model; differentiating results of the simulation with respect to reduced-order model parameters; differentiating parameters of the reduced-order model with respect to parasitic values; differentiating the parasitic values with respect to statistical parameters; and computing the differential results of the simulation with respect to the statistical parameters via chain ruling.
    Type: Application
    Filed: July 12, 2019
    Publication date: October 31, 2019
    Inventors: Robert J. ALLEN, Yanai DANAN, Vasant RAO, Jeffrey P. SOREFF, Xin ZHAO
  • Patent number: 10394986
    Abstract: A method of performing transistor simulation with improved sensitivity to parasitic by model order reduction in transistor-level timing is disclosed. The method includes reducing a number of derivative calculations during transistor simulation by representing parasitics as a reduced-order model, wherein the reducing includes: compressing the parasitics to a reduced-order model; simulating with load which is replaced with the reduced-order model; differentiating results of the simulation with respect to reduced-order model parameters; differentiating parameters of the reduced-order model with respect to parasitic values; differentiating the parasitic values with respect to statistical parameters; and computing the differential results of the simulation with respect to the statistical parameters via chain ruling.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: August 27, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert J. Allen, Yanai Danan, Vasant Rao, Jeffrey P. Soreff, Xin Zhao
  • Patent number: 10380289
    Abstract: Creating an integrated circuit with non-linear variations, the computer identifies an integrated circuit design; identifies a timing model associated with the identified integrated circuit design; defines one or more static single sided variables; defines one or more regions of one or more of the defined one or more static single sided variables that are treated linearly; defines one or more multi-sided variables based on the defined one or more regions of the one or more of the defined one or more static single sided variables; identifies one or more timing paths within the identified integrated circuit design; performs a statistical static timing analysis on the identified timing model for the identified one or more timing paths within the identified integrated circuit design utilizing the defined one or more multi-sided variables; provides one or more timing quantities that project within a multi-parameter space based on the performed statistical static timing analysis.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: August 13, 2019
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Allen, Nathan C. Buck, Eric A. Foreman, Jeffrey G. Hemmett, Kerim Kalafala, Gregory M. Schaeffer, Stephen G. Shuma, Debjit Sinha, Natesan Venkateswaran, Vladimir Zolotov
  • Patent number: 10380286
    Abstract: The computer identifies an integrated circuit design; identifies a timing model associated with the identified integrated circuit design; defines one or more static single sided variables; defines one or more regions of one or more of the defined one or more static single sided variables that are treated linearly; defines one or more multi-sided variables based on the defined one or more regions of the one or more of the defined one or more static single sided variables; identifies one or more timing paths within the identified integrated circuit design; performs a statistical static timing analysis on the identified timing model for the identified one or more timing paths within the identified integrated circuit design utilizing the defined one or more multi-sided variables; provides one or more timing quantities that project within a multi-parameter space based on the performed statistical static timing analysis.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: August 13, 2019
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Allen, Nathan C. Buck, Eric A. Foreman, Jeffrey G. Hemmett, Kerim Kalafala, Gregory M. Schaeffer, Stephen G. Shuma, Debjit Sinha, Natesan Venkateswaran, Vladimir Zolotov
  • Patent number: 10360329
    Abstract: Embodiments relate to multi-cycle signal identification for static timing analysis. An aspect includes identifying, in a circuit under test, a multi-cycle signal, the multi-cycle signal having a longer period than a main clock signal of the circuit under test. Another aspect includes mapping a plurality of additional signals of the circuit under test onto the multi-cycle signal, the plurality of additional signals each having a shorter period than the multi-cycle signal. Yet another aspect includes performing static timing analysis of the circuit under test based on the multi-cycle signal.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: July 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert J. Allen, Vasant B. Rao, William J. Wright, Xin Zhao
  • Patent number: 10354041
    Abstract: Disclosed is a method for improving capacitance extraction performance in a circuit, the method including mapping, via a computing resource, a first layout including a plurality of wiring paths, selecting at least one target wire from the plurality of wiring paths, selecting at least one group of wires running orthogonally to the at least one target wire, identifying and selecting within the at least one group at least one set of two or more wires that are combinable for representation as a single merged wire, mapping a second layout, via the computing resource, and representing the at least one set of two or more wires as the single merged wire in said second layout, analyzing parasitic capacitance between the at least one target wire and the at least one group of wires using the second layout, and manufacturing the circuit using information from the analyzing of parasitic capacitance.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: July 16, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert J. Allen, Susan E. Cellier, Lewis W. Dewey, III, Anthony D. Hagin, Adam P. Matheny, Ronald D. Rose, David J. Widiger
  • Patent number: 10346569
    Abstract: Creating by a computer an integrated circuit with non-linear variations, the computer identifies an integrated circuit design; identifies a timing model associated with the identified integrated circuit design; defines one or more static single sided variables; defines one or more regions of the defined one or more static single sided variables that are treated linearly; defines one or more multi-sided variables based on the defined one or more regions of the defined one or more static single sided variables; identifies one or more timing paths within the identified integrated circuit design; performs a statistical static timing analysis on the identified timing model for the identified one or more timing paths within the identified integrated circuit design utilizing the defined one or more multi-sided variables; provides one or more timing quantities that project within a multi-parameter space based on the performed statistical static timing analysis.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Allen, Nathan C. Buck, Eric A. Foreman, Jeffrey G. Hemmett, Kerim Kalafala, Gregory M. Schaeffer, Stephen G. Shuma, Debjit Sinha, Natesan Venkateswaran, Vladimir Zolotov
  • Publication number: 20190138916
    Abstract: Aspects include creating a knowledge base that identifies experts in a set of domains. Front-end processing is provided to an issue tracking system. The front-end processing includes receiving a report of an issue related to one of the domains, and accessing the knowledge base to locate an expert in the domain. The front-end processing also includes instructing the issue tracking system to route the received report of the issue to the located expert in the domain. The issue tracking system executes on a different processor than the front-end processing. Data collected from operation of the issue tracking system is monitored, and the knowledge base is updated based at least in part on the data collected from the operation of the issue tracking system.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 9, 2019
    Inventors: Robert J. Allen, Adil Bhanji, Vasant B. Rao, Peter A. Twombly, Loma D. Vaishnav, Xin Zhao
  • Patent number: 10196228
    Abstract: A collation folding device comprising one or more fold rollers mounted in fixed positions. Below and adjacent to the fold rollers are adjustable nip rollers to form nip spacing between the rollers. The adjustable nip roller is mounted on a nip axis shaft. An adjustment mechanism is used for moving the nip axis shaft to adjust the nip spacing. The nip adjustment mechanism includes a bearing block cam follower on which the nip axis shaft is fixedly mounted and supported. An eccentric cam in operative contact with the bearing block cam follower. Rotation of the eccentric cam on the eccentric cam axis drives the bearing block cam follower in its linear motion to adjust the nip spacing.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: February 5, 2019
    Assignee: DMT Solutions Global Corporation
    Inventors: Robert J Allen, Michael R Ifkovits, Boris Rozenfeld, George Cruz, Edward M. Ifkovits