Patents by Inventor Robert J. Falkiner

Robert J. Falkiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11046896
    Abstract: A process for cleansing a liquid of volatile contaminants can be accomplished by cross flowing a liquid through a contactor vessel. As the liquid cross flows through the horizontal contactor vessel, a radial flow pattern is induced in the liquid and the liquid is contacted with a cleansing gas. As the liquid moves through the contactor vessel, contaminants enter the cleansing cross current gas percolating through the liquid. The cross current gas may then be collected and cleansed of the contaminants it collected. The cleaned cleansing gas may then be recycled back into the contactor vessel.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: June 29, 2021
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Robert J. Falkiner, Ashok Uppal, Luke J. Kariparampil, Vincent A. Brunet, Alain D. Fomo
  • Publication number: 20210016222
    Abstract: Methods for the prevention or mitigation of fouling in amine-treating systems comprising providing circulating aqueous amine solution and a hydrocarbon stream comprising at least one acid gas; and interacting the circulating aqueous amine solution with the hydrocarbon stream comprising the at least one acid gas to remove the acid gas from the hydrocarbon stream and entrain the acid gas into the aqueous amine solution. The circulating aqueous amine solution comprises entrained acid gas comprises foulant precursors; and polysulfide ions are introduced to react with the foulant precursors to decrease the rate of fouling within the circulating aqueous amine solution.
    Type: Application
    Filed: July 16, 2020
    Publication date: January 21, 2021
    Inventors: Gordon Bryce McGarvey, Robert J. Falkiner, Jesus Moreira del Rio, David R. Slim
  • Publication number: 20190359899
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Publication number: 20190338203
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Patent number: 10414991
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 17, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Benjamin S. Umansky, Himanshu Gupta, John D. Nelson, Cindy J. Hughart, Jane C. Cheng, Steven W. Levine, Stephen H. Brown, Todd P. Marut, David C. Dankworth, Stuart L. Soled, Thomas F. Degnan, Jr., Robert J. Falkiner, Mohsen N. Harandi, Juan D. Henao, Lei Zhang, Chuansheng Bai, Richard C. Dougherty
  • Publication number: 20190184330
    Abstract: A low-cost process for cleansing a liquid of volatile contaminants can be accomplished by cross flowing a liquid through a contactor vessel. As the liquid to be cleansed of contaminates cross flows through the horizontal contactor vessel, a radial flow pattern is induced in the liquid and the liquid is contacted with a cleansing gas introduced cross current to the flow of the liquid through the contactor vessel. As the liquid moves through the contactor vessel, contaminants enter the cleansing cross current gas percolating through the liquid. The cross current gas may then be collected and cleansed of the contaminates it collected. The cleaned cleansing gas may then be recycled back into the contactor vessel. The liquid to be cleansed may by any liquid or liquefied hydrocarbon, such as liquefied petroleum gas, gasoline, diesel, refinery component streams, distillates, gas oils, crude oils and/or emulsions.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 20, 2019
    Inventors: Robert J. Falkiner, Ashok Uppal, Luke J. Kariparampil, Vincent A. Brunet, Alain D. Fomo
  • Publication number: 20180002617
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: June 19, 2017
    Publication date: January 4, 2018
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Patent number: 9028675
    Abstract: This invention relates to a method for increasing thermal stability of fuel, as well as in reducing nitrogen content and/or enhancing color quality of the fuel. According to the method, a fuel feedstock can be treated with a solid phosphoric acid catalyst under appropriate catalyst conditions, e.g., to increase the thermal stability of the fuel feedstock. Preferably, the fuel feedstock can be treated with the solid phosphoric acid catalyst at a ratio of catalyst mass within a contact zone to a mass flow rate of feedstock through the zone of at least about 18 minutes to increase the thermal stability of the fuel feedstock, along with reducing nitrogen content and/or enhancing color quality.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: May 12, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastien Bergeron, Ashok Uppal, Robert J. Falkiner, Marc-André Poirier
  • Patent number: 8916117
    Abstract: A method for the reduction of corrosion in a treatment unit acid used for separating hydrogen sulfide from and acid gas stream using an alkaline absorption solution. Ions comprising the S2? and/or HS? ions formed by the absorption of the hydrogen sulfide in the absorbent solution are subjected to in situ electrochemical oxidization to form polysulfide ions which form a protective coating on the surfaces of the unit.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: December 23, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon Bryce McGarvey, Robert J. Falkiner, David R. Slim, Bryan M. Knickerbocker
  • Publication number: 20140093440
    Abstract: A method for the reduction of corrosion in a treatment unit acid used for separating hydrogen sulfide from and acid gas stream using an alkaline absorption solution. Ions comprising the S2? and/or HS? ions formed by the absorption of the hydrogen sulfide in the absorbent solution are subjected to in situ electrochemical oxidization to form polysulfide ions which form a protective coating on the surfaces of the unit.
    Type: Application
    Filed: December 5, 2013
    Publication date: April 3, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Gordon Bryce McGARVEY, Robert J. FALKINER, David R. SLIM, Bryan M. KNICKERBOCKER
  • Patent number: 8668887
    Abstract: Methods and systems are provided for the in situ generation of polysulfide ions in a process stream including S2? and/or HS? ions. Methods and systems are also provided to ameliorate corrosion in a process stream containing an acid gas or a scrubbing agent solvent, and abate mercury and cyanide in process streams containing a scrubbing agent solvent.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: March 11, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon Bryce McGarvey, Robert J. Falkiner, David R. Slim, Bryan M. Knickerbocker
  • Patent number: 8658028
    Abstract: A process for removing elemental sulfur from liquid hydrocarbon steams such as transportation fuel streams, e.g. gasoline, diesel, kerosene, and jet, by contacting such streams with an immiscible aqueous solution under static mixing conditions. The aqueous solution contains a caustic and an effective amount of a Group I or Group II metal sulfide or polysulfide. The elemental sulfur in the stream is converted to a polysulfide that is not soluble in the hydrocarbon stream but is soluble in the aqueous solution, thus resulting in a hydrocarbon product stream having a substantially lower level of elemental sulfur.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: February 25, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ashok Uppal, Ramesh R. Hemrajani, Robert J. Falkiner, Lawrence J. Lawlor, Joseph L. Feimer
  • Publication number: 20140042362
    Abstract: Methods and systems are provided for the in situ generation of polysulfide ions in a process stream including S2? and/or HS? ions. Methods and systems are also provided to ameliorate corrosion in a process stream containing an acid gas or a scrubbing agent solvent, and abate mercury and cyanide in process streams containing a scrubbing agent solvent.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 13, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Gordon Bryce McGARVEY, Robert J. FALKINER, David R. SLIM, Bryan M. KNICKERBOCKER
  • Publication number: 20130068660
    Abstract: This invention relates to a method for increasing thermal stability of fuel, as well as in reducing nitrogen content and/or enhancing color quality of the fuel. According to the method, a fuel feedstock can be treated with a solid phosphoric acid catalyst under appropriate catalyst conditions, e.g., to increase the thermal stability of the fuel feedstock. Preferably, the fuel feedstock can be treated with the solid phosphoric acid catalyst at a ratio of catalyst mass within a contact zone to a mass flow rate of feedstock through the zone of at least about 18 minutes to increase the thermal stability of the fuel feedstock, along with reducing nitrogen content and/or enhancing color quality.
    Type: Application
    Filed: June 28, 2012
    Publication date: March 21, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Sebastien Bergeron, Ashok Uppal, Robert J. Falkiner, Marc-André Poirier
  • Patent number: 8093441
    Abstract: The removal of fluoroalkanes from fluoroalkane-containing hydrocarbon streams, preferably C3 to C5 hydrocarbon streams. The fluoroalkane-containing hydrocarbon stream is contacted with an adsorbent containing a strong acid function, preferably a silica gel or a strong cation ion-exchange resin having sulfonic acid functionality.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: January 10, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Marc-André Poirier, Robert J. Falkiner
  • Patent number: 8088281
    Abstract: A method for the removal of entrained hydrocarbons, particularly aromatics, from water by extracting the hydrocarbons in the water with a hydrocarbon which is relatively less soluble in the water than the entrained hydrocarbon. The hydrocarbons are then separated from the water by a process of coalescence/separation. The extractant is suitably a paraffinic hydrocarbon which, while having an affinity for the entrained hydrocarbon, is relatively less soluble in water than hydrocarbons such as aromatics. The hydrocarbons removed from the water can be recirculated to the feed with the composition of the recirculating phase being controlled to achieve the desired level of hydrocarbon removal.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: January 3, 2012
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Robert J. Falkiner, Bal K. Kaul
  • Patent number: 8080087
    Abstract: A method of drying liquid and gaseous hydrocarbons by contacting a feed stream of the hydrocarbon with an aqueous solution of a salt drying agent prior to passing the stream through a salt dryer to remove part of the water in the stream. The aqueous solution of the salt drying agent is generated in the salt dryer when the partly dried stream comes into contact with the drying salt and forms the solution. The solution is circulated in a loop from the salt dryer to the incoming feed and then through a liquid/liquid coalescer which removes a portion of the water together with dissolved salt from the mixture before the mixture is passed on to the salt dryer where further removal of water occurs. The salt dryer is off-loaded by a substantial factor by the initial partial dehydration and does not require to remove such a large amount of water; the salt consumption is therefore reduced in proportion to the amount of water removed in the treatment steps which precede the dryer.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: December 20, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Robert J. Falkiner, Bal K. Kaul
  • Publication number: 20100160706
    Abstract: The removal of fluoroalkanes from fluoroalkane-containing hydrocarbon streams, preferably C3 to C5 hydrocarbon streams. The fluoroalkane-containing hydrocarbon stream is contacted with an adsorbent containing a strong acid function, preferably a silica gel or a strong cation ion-exchange resin having sulfonic acid functionality.
    Type: Application
    Filed: November 6, 2009
    Publication date: June 24, 2010
    Inventors: Marc-André Poirier, Robert J. Falkiner
  • Publication number: 20100072109
    Abstract: A process for removing elemental sulfur from liquid hydrocarbon steams such as transportation fuel streams, e.g. gasoline, diesel, kerosene, and jet, by contacting such streams with an immiscible aqueous solution under static mixing conditions. The aqueous solution contains a caustic and an effective amount of a Group I or Group II metal sulfide or polysulfide. The elemental sulfur in the stream is converted to a polysulfide that is not soluble in the hydrocarbon stream but is soluble in the aqueous solution, thus resulting in a hydrocarbon product stream having a substantially lower level of elemental sulfur.
    Type: Application
    Filed: January 17, 2008
    Publication date: March 25, 2010
    Inventors: Ashok Uppal, Ramesh R. Hemrajani, Robert J. Falkiner, Lawrence J. Lawlor, Joseph L. Feimer
  • Publication number: 20090134068
    Abstract: A method for the removal of dissolved water or water and ice from hydrocarbon liquids such as petroleum refinery fuels or natural gas liquids in a manner which enables the fuels to be readily treated by the coalescence/separation technique while reducing the potential for plugging filters and other equipment with ice crystals. Free water or water/ice is removed from the liquid hydrocarbons by contacting the hydrocarbon feed with a treating agent which as an affinity for water prior to subjecting the mixture to coalescence/separation. The treating agent is preferably a co-solvent for the water and the hydrocarbon such as an alcohol e.g. methanol. The treating agent and water are separated from the hydrocarbon component during the coalescence/separation and recirculated to the feed with the composition of the recycle aqueous phase being controlled to achieve the desired level of water removal to meet relevant product specifications.
    Type: Application
    Filed: October 24, 2008
    Publication date: May 28, 2009
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Robert J. Falkiner, Bal K. Kaul, Ian D. Campbell