Patents by Inventor Robert J. Farrauto

Robert J. Farrauto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040082471
    Abstract: Provided is a process for preparing a non-pyrophoric catalyst having about 2 to 20 wt. % of a copper component, wherein at least 50 wt. % of the copper component is in the form of a copper oxide, aluminum oxide-spinel. The catalyst can be prepared by forming a mixture of a copper precursor and an alumina precursor, coextruding the mixture, drying the coextrudate and calcining the dried coextrudate at a temperature of at least 600° C. In other aspects, the invention also relates to processes for the activation of copper-based catalysts and for the regeneration of deactivated copper-based catalysts.
    Type: Application
    Filed: October 28, 2002
    Publication date: April 29, 2004
    Inventors: Oleg M. Ilinich, Wolfgang F. Ruettinger, Ronald T. Mentz, Robert J. Farrauto
  • Publication number: 20030230029
    Abstract: Provided is a method and apparatus for producing hydrogen from an input gas stream containing carbon monoxide and steam that includes contacting the input gas stream with a catalyst. The catalyst contains an inorganic oxide support; a platinum group metal dispersed on the inorganic oxide support; and a methane suppressing dispersed on the inorganic oxide support. The methane suppressing component is selected from the group consisting of oxides of tin, oxides of gallium and combinations thereof. Also provided are preferred catalyst preparations.
    Type: Application
    Filed: June 12, 2002
    Publication date: December 18, 2003
    Applicant: ENGELHARD CORPORATION
    Inventors: Wolfgang F. Ruettinger, Robert J. Farrauto
  • Patent number: 6559094
    Abstract: The invention pertains to the preparation and use of catalytic materials and catalyst members for the selective oxidation of carbon monoxide in a gas stream that contains hydrogen. One such catalyst member may be produced by depositing by electric arc spraying a metal feedstock onto a metal substrate to provide a metal anchor layer on the substrate, and depositing a catalytic material comprising platinum and iron dispersed on a refractory inorganic oxide support material onto the metal substrate. The catalytic material may optionally be produced by wetting the support material, especially a particulate support material, with a platinum group metal solution and iron solution and drying and calcining the wetted support material in air at a temperature in the range of from 200° C. to 300° C., preferably using a solution containing bivalent platinum ion species. The catalyst member may be used by flowing the gas stream therethrough at a temperature at about 90° C.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: May 6, 2003
    Assignee: Engelhard Corporation
    Inventors: Olga Korotkikh, Robert J. Farrauto, Andrew McFarland
  • Publication number: 20030083196
    Abstract: The invention pertains to the preparation and use of catalytic materials and catalyst members for the selective oxidation of carbon monoxide in a gas stream that contains hydrogen. One such catalyst member may be produced by depositing by electric arc spraying a metal feedstock onto a metal substrate to provide a metal anchor layer on the substrate, and depositing a catalytic material comprising platinum and iron dispersed on a refractory inorganic oxide support material onto the metal substrate. The catalytic material may optionally be produced by wetting the support material, especially a particulate support material, with a platinum group metal solution and iron solution and drying and calcining the wetted support material in air at a temperature in the range of from 200° C. to 300° C., preferably using a solution containing bivalent platinum ion species. The catalyst member may be used by flowing the gas stream therethrough at a temperature at about 90° C.
    Type: Application
    Filed: December 2, 2002
    Publication date: May 1, 2003
    Inventors: Olga Korotkikh, Robert J. Farrauto, Andrew McFarland
  • Patent number: 6541419
    Abstract: A sulfur sorber for the reduction of gaseous sulfur compounds, e.g., H2S, in a gas stream The sulfur sorber, e.g., zinc oxide, is present in the form of one or more layers on the surface of a monolith carrier, e.g., cordierite. The layers have a total thickness of at least 3 g/in3 of the carrier. Preferably, the sorber is present in the form of at least three layers on the surface of the monolith carrier.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: April 1, 2003
    Assignee: Engelhard Corporation
    Inventors: Lawrence Shore, Robert J. Farrauto
  • Publication number: 20030021748
    Abstract: A process for catalytically generating a hydrogen-rich gas from a hydrocarbon feed. A stream comprising the hydrocarbon feed, water and air is preheated to a temperature sufficiently high to initiate catalytic partial oxidation of the hydrocarbon feed. The preheated stream is then introduced into an autothermal reactor containing a layered catalyst member at a temperature sufficient to initiate and sustain both catalytic partial oxidation and catalytic steam reforming. At least part of the hydrocarbon feed is catalytically partially oxidized to produce a hydrogen-rich gas comprising hydrogen and carbon oxides and hydrocarbons remaining in the feed are steam reformed to produce further quantities of the hydrogen-rich gas. The layered catalyst member comprises a monolith substrate containing at least one layer of a steam reforming catalyst in contact with at least one layer of a catalytic partial oxidation catalyst.
    Type: Application
    Filed: August 19, 2002
    Publication date: January 30, 2003
    Applicant: Engelhard Corporation
    Inventors: H. Shinn Hwang, Robert J. Farrauto
  • Publication number: 20020178915
    Abstract: A process for the reduction of gaseous sulfur compounds in gaseous streams. The gaseous stream is contacted with a sorber, e.g., zinc oxide, which is capable of sorbing the sulfur compounds under sulfur sorbing conditions. The sorber is present in the form of one or more layers on the surface of a monolith carrier, e.g., cordierite. The layers of the sorber have a total thickness of at least 3 g/in3 of the carrier. The process is especially useful for the removal of gaseous sulfur compounds such as H2S from gaseous streams.
    Type: Application
    Filed: June 27, 2002
    Publication date: December 5, 2002
    Applicant: Engelhard Corporation
    Inventors: Lawrence Shore, Robert J. Farrauto
  • Patent number: 6471924
    Abstract: A method for reduction of NOx in a lean gaseous stream includes passing the gaseous stream at a temperature within the NOx sorbing temperature range through a catalyzed trap member having an oxidation catalyst intimately combined with a sorbent material. The sorbed NOx is periodically removed by introducing a combustible component into the gaseous stream and oxidizing it on the trap member to thermally desorb the NOx. The amount of combustible component introduced is limited to maintain the gaseous stream bulk composition lean and to avoid increasing the bulk temperature of the gaseous stream to a temperature which is too high for effective lean NOx abatement treatment. A suitable NOx abatement catalyst is used to reduce the desorbed NOx. Sorbing (trapping) and desorbing periods are alternated, usually in response to the temperature of the gaseous stream, and an apparatus to carry out the process is provided.
    Type: Grant
    Filed: May 13, 1996
    Date of Patent: October 29, 2002
    Assignee: Engelhard Corporation
    Inventors: Jennifer S. Feeley, Robert J. Farrauto, Michel Deeba
  • Publication number: 20020147103
    Abstract: The invention provides copper-based catalysts containing low concentrations of platinum group metals. In some embodiments, the catalysts of the invention have an oxide support on which is dispersed copper or an oxide thereof, a platinum group metal and a reducible metal oxide. In other embodiments, the catalysts have a cerium oxide support on which is dispersed copper or an oxide thereof and a platinum group metal. In one aspect, the catalysts can be employed as effective water-gas shift reaction catalyst that are stable to steam exposure at lower temperatures, e.g., below 220 ° C. The invention also provides apparatus such as fuel processors that supply hydrogen to a fuel cell, that incorporate the catalysts.
    Type: Application
    Filed: November 9, 2001
    Publication date: October 10, 2002
    Inventors: Wolfgang F. Ruettinger, Xinsheng Liu, Robert J. Farrauto
  • Publication number: 20020141938
    Abstract: The invention provides processes for producing hydrogen that include contacting an input gas stream comprising steam and carbon monoxide with water-gas shift catalysts. The water-gas shift catalysts are copper-based catalysts containing low concentrations of platinum group metals. In some embodiments, the processes of the invention are conducted using water-gas shift catalysts having a an oxide support on which is dispersed copper or an oxide thereof, a platinum group metal and a reducible metal oxide. In other embodiments, the processes of the invention are conducted with a water-gas shift catalysts having a cerium oxide support on which is dispersed copper or an oxide thereof and a platinum group metal.
    Type: Application
    Filed: November 9, 2001
    Publication date: October 3, 2002
    Inventors: Wolfgang F. Ruettinger, Xinsheng Liu, Robert J. Farrauto
  • Publication number: 20020131925
    Abstract: Provided is a ruthenium-based catalyst having from about 1 to 10 wt. % of a ruthenium component and at least about 0.5 wt. % of zinc oxide. In one embodiment of the catalyst, zinc oxide itself serves as a support on which the ruthenium is dispersed. In another embodiment, the ruthenium component and the zinc oxide are dispersed on a refractory oxide support other than zinc oxide. In a process aspect, the ruthenium-based catalyst can serve as a preferential oxidation catalyst in processes for removing carbon monoxide from an input gas stream containing carbon monoxide, hydrogen and oxygen. The invention also provides articles wherein multi-stage preferential oxidation processes for removal of carbon monoxide from hydrogen streams can be conducted.
    Type: Application
    Filed: March 18, 2002
    Publication date: September 19, 2002
    Applicant: ENGELHARD CORPORATION
    Inventors: Lawrence Shore, Wolfgang F. Ruettinger, Robert J. Farrauto
  • Publication number: 20020131915
    Abstract: The invention provides copper-based preferential oxidation catalysts containing low concentrations of platinum group metals. In some embodiments, the catalysts of the invention have an oxide support on which is dispersed copper or an oxide thereof, a platinum group metal and a reducible metal oxide. In other embodiments, the catalysts have a cerium oxide support on which is dispersed copper or an oxide thereof and a platinum group metal. The catalysts serve as effective preferential oxidation catalyst that selectively oxidize carbon monoxide with minimal consumption of hydrogen. In some embodiments the catalysts of the invention are able to achieve levels of carbon monoxide below 10 ppm in output gas streams containing hydrogen operating with wide temperature ranges. The invention also provides apparatus, such as fuel processors, that supply hydrogen to a fuel cell, that incorporate the preferential oxidation catalysts.
    Type: Application
    Filed: November 9, 2001
    Publication date: September 19, 2002
    Inventors: Lawrence Shore, Wolfgang F. Ruettinger, Robert J. Farrauto
  • Publication number: 20020122764
    Abstract: The invention provides processes for selectively oxidizing carbon monoxide from an input gas stream that contains carbon monoxide, oxygen and hydrogen. The process includes the step of contacting the input gas stream with a preferential oxidation catalyst. The preferential oxidation catalysts are copper-based catalysts containing low concentrations of platinum group metals. In some embodiments, the processes of the invention are conducted using preferential oxidation catalysts having an oxide support on which is dispersed copper or an oxide thereof, a platinum group metal and a reducible metal oxide. In other embodiments, the processes of the invention are conducted with a preferential oxidation catalysts having a cerium oxide support on which is dispersed copper or an oxide thereof and a platinum group metal.
    Type: Application
    Filed: November 9, 2001
    Publication date: September 5, 2002
    Inventors: Lawrence Shore, Wolfgang F. Ruettinger, Robert J. Farrauto
  • Patent number: 6436363
    Abstract: A process for catalytically generating a hydrogen-rich gas from a hydrocarbon feed. A stream comprising the hydrocarbon feed , water and air is preheated to a temperature sufficiently high to initiate catalytic partial oxidation of the hydrocarbon feed. The preheated stream is then introduced into an autothermal reactor containing a layered catalyst member at a temperature sufficient to initiate and sustain both catalytic partial oxidation and catalytic steam reforming. At least part of the hydrocarbon feed is catalytically partially oxidized to produce a hydrogen-rich gas comprising hydrogen and carbon oxides and hydrocarbons remaining in the feed are steam reformed to produce further quantities of the hydrogen-rich gas. The layered catalyst member comprises a monolith substrate containing at least one layer of a steam reforming catalyst in contact with at least one layer of a catalytic partial oxidation catalyst.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: August 20, 2002
    Assignee: Engelhard Corporation
    Inventors: H. Shinn Hwang, Robert J. Farrauto
  • Patent number: 6428761
    Abstract: A process for the reduction of gaseous sulfur compounds in gaseous streams. The gaseous stream is contacted with a sorber, e.g., zinc oxide, which is cable of sorbing the sulfur compounds under sulfur sorbing conditions. The sorber is present in the form of one or more layers on the surface of a monolith carrier, e.g., cordierite. The layers of the sorber have a total thickness of at least 3 g/in3 of the carrier. The process is especially useful for the removal of gaseous sulfur compounds such as H2S from gaseous streams.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: August 6, 2002
    Assignee: Engelhard Corporation
    Inventors: Lawrence Shore, Robert J. Farrauto
  • Publication number: 20020061277
    Abstract: The invention provides a process, catalyst and apparatus for carrying out the water-gas shift reaction comprising employing a low-pyrophoricity water-gas shift reaction catalyst; wherein the low-pyrophoricity water-gas shift reaction catalyst comprises a solid high heat capacity particulate support impregnated with: (i) a reducible metal oxide and (ii) a catalytic agent.
    Type: Application
    Filed: January 29, 2001
    Publication date: May 23, 2002
    Applicant: ENGELHARD CORPORATION
    Inventors: Wolfgang F. Ruettinger, Olga Korotkikh, Robert J. Farrauto
  • Publication number: 20020041842
    Abstract: Provided is a trap and method for removing hydrogen sulfide from a gas stream. The hydrogen sulfide trap includes a monolith substrate on which is disposed zinc oxide, and a second metal or oxide thereof. In some aspects, the hydrogen sulfide trap is advantageously incorporated into systems for producing hydrogen for PEM fuel cells.
    Type: Application
    Filed: September 26, 2001
    Publication date: April 11, 2002
    Applicant: ENGELHARD CORPORATION
    Inventors: Wolfgang F. Ruettinger, Robert J. Farrauto, Lawrence Shore
  • Publication number: 20020006363
    Abstract: A method of at least periodically removing from a lean gaseous stream a sorbable component such as SOx includes passing the gaseous stream through a trap member having an oxidation catalyst combined with a sorbent material at a temperature within the sorbing temperature range of the sorbent material. The sorbed component is periodically removed by introducing a combustible component into the gaseous stream and oxidizing it on the trap member to thermally desorb the sorbed component. The amount of combustible component introduced is limited to maintain the gaseous stream composition lean, but is sufficient to increase the surface temperature of at least part of the trap member to above the bulk temperature of the gaseous stream. Sorbing and desorbing periods are alternated and a composition and an apparatus to carry out the process is provided.
    Type: Application
    Filed: March 4, 1998
    Publication date: January 17, 2002
    Inventors: JENNIFER S. FEELEY, ROBERT J. FARRAUTO, MICHEL DEEBA, JORDAN K. LAMPERT
  • Patent number: 6319484
    Abstract: A composition for abatement of airborne pollution by volatile organic compounds (“VOCs”) has an upstream composition which contains a protective adsorbent, e.g., Y zeolite, which is effective for adsorbing large VOC molecules, e.g., toluene, and a protective oxidation catalyst intimately intermingled therewith. The downstream composition contains a second adsorbent, e.g., a silver-containing ZSM-5, which is effective for adsorbing relatively smaller VOC molecules, e.g., propylene, and a second oxidation catalyst intimately intermingled therewith. Oxidation of VOCs while they are still retained on the adsorbents is promoted at temperatures lower than would be required if the VOCs were desorbed into the gaseous phase. Apparatus is provided including a first contact member (24) coated with the upstream composition and positioned upstream of a second contact member (32) coated with the downstream composition.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: November 20, 2001
    Assignee: Engelhard Corporation
    Inventors: Lawrence Shore, Robert J. Farrauto, Michel Deeba, Jordan K. Lampert, Ronald M. Heck
  • Publication number: 20010038812
    Abstract: Oxidation catalyst compositions for treating diesel exhaust include ceria and, optionally, alumina, each having a surface area of at least about 10 m2/g, and a zeolite, e.g., Beta zeolite. Optionally, platinum may be included in the catalytic material, preferably in amounts which are sufficient to promote some gas-phase oxidation of carbon monoxide (“CO”) and hydrocarbons (“HC”) but which are limited to preclude excessive oxidation of SO2 to SO3. Alternatively, palladium in any desired amount may be included in the catalytic material. The zeolite is optionally doped, e.g., ion-exchanged, with one or more of hydrogen, a platinum group metal or other catalytic metals. The catalyst compositions may be used in a method to treat diesel engine exhaust by contacting the hot exhaust with the catalyst composition to promote the oxidation of gas-phase CO and HC and of the volatile organic fraction component of particulates in the exhaust.
    Type: Application
    Filed: June 13, 2001
    Publication date: November 8, 2001
    Inventors: Bulent O. Yavuz, Kenneth E. Voss, Michel Deeba, John R. Adomaitis, Robert J. Farrauto