Patents by Inventor Robert L. Cowan

Robert L. Cowan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170067633
    Abstract: A radiant panel burner is provided having a primary heat emitter and a secondary heat emitter. The radiant panel includes a plenum chamber that houses a baffle connected to a mixer that supplies combustible gas. In a preferred embodiment, the primary heat emitter is a perforated ceramic grid positioned over the plenum chamber and having a plurality of ports through which the combustible gas can travel. The secondary heat emitter is a non-planar radiant panel positioned over the primary heat emitter that generates convective and radiant heat. The non-planar shape of the secondary heat emitter provides more uniform heating and reduces accumulation of cooking by-products. The radiant panel protects the primary heat emitter from contaminants and provides enclosure for the combustion area for more rapid and efficient heating. Together, the primary and secondary heat emitters are configured to provide fast, clean, efficient, and uniform heating within a grilling apparatus.
    Type: Application
    Filed: September 8, 2015
    Publication date: March 9, 2017
    Inventor: Robert L. Cowan
  • Patent number: 9533270
    Abstract: A system and method of injecting a chemical into a high pressure process stream without pumps or other active components. The system utilizes the differential pressure created by resistive losses of downstream components within a high pressure process stream. A bypass side stream is taken from an upstream pressure location and returned to the downstream side of the resistive inline process component. The chemical solution vessel is pressurized by the higher side of the pressure differential. The solution then passes through a flow controlling capillary tube exiting on the lower pressure differential side into the bypass stream. The high flow rate chemically diluted bypass stream then returns to the process stream at the lower differential process stream tie-in. The chemical solution is isolated from the process water pressuring the vessel by a movable separating device preventing mixing of the two fluids. The vessel can also be pressurized by gas.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: January 3, 2017
    Inventors: Robert James Law, Robert L Cowan, Thomas P Diaz, Samson Hettiarachchi
  • Publication number: 20140360606
    Abstract: A system and method of injecting a chemical into a high pressure process stream without pumps or other active components. The system utilizes the differential pressure created by resistive losses of downstream components within a high pressure process stream. A bypass side stream is taken from an upstream pressure location and returned to the downstream side of the resistive inline process component. The chemical solution vessel is pressurized by the higher side of the pressure differential. The solution then passes through a flow controlling capillary tube exiting on the lower pressure differential side into the bypass stream. The high flow rate chemically diluted bypass stream then returns to the process stream at the lower differential process stream tie-in. The chemical solution is isolated from the process water pressuring the vessel by a movable separating device preventing mixing of the two fluids. The vessel can also be pressurized by gas.
    Type: Application
    Filed: June 6, 2014
    Publication date: December 11, 2014
    Inventors: Robert James Law, Robert L. Cowan, Thomas P. Diaz, Samson Hettiarachchi
  • Publication number: 20080227044
    Abstract: An improved radiant burner which is particularly useful at low flow rates. The radiant burner has a reticulated metal foam with a first face and a second face and a density sufficient for combustion fuel to pass there through. The first face is adapted to be the initial contact for the combustion fuel passing through the reticulated metal foam. The second face is adapted to radiate after the combustion fuel has been ignited.
    Type: Application
    Filed: March 10, 2008
    Publication date: September 18, 2008
    Inventors: Edward J. Cookson, Robert L. Cowan
  • Patent number: 6714618
    Abstract: Method for controlling the amount of metal atoms deposited into an oxide layer present on a metal surface, which metal atoms increase the corrosion resistance of metal when present in the oxide film, wherein the metal surface is submerged in water at a selected temperature within the range of about to 200° to 550° F.; and a solution of a compound containing the metal which increases the corrosion resistance of the metal surface when present in the oxide film is injected into the water. The compound decomposes at the selected temperature to release atoms of the metal which incorporate in the oxide film at a desired loading.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: March 30, 2004
    Assignee: General Electric Company
    Inventors: Samson Hettiarachchi, Robert J. Law, David P. Siegwarth, Thomas P. Diaz, Robert L. Cowan
  • Patent number: 6697449
    Abstract: Method for controlling the amount of metal atoms deposited into an oxide layer present on a metal surface, which metal atoms increase the corrosion resistance of metal when present in the oxide film, wherein the metal surface is submerged in water at a selected temperature within the range of about to 200° to 550° F.; and a solution of a compound containing the metal which increases the corrosion resistance of the metal surface when present in the oxide film is injected into the water. The compound decomposes at the selected temperature to release atoms of the metal which incorporate in the oxide film at a desired loading.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: February 24, 2004
    Assignee: General Electric Company
    Inventors: Samson Hettiarachchi, Robert J. Law, David P. Siegwarth, Thomas P. Diaz, Robert L. Cowan
  • Publication number: 20020181644
    Abstract: Method for controlling the amount of metal atoms deposited into an oxide layer present on a metal surface, which metal atoms increase the corrosion resistance of metal when present in the oxide film, wherein the metal surface is submerged in water at a selected temperature within the range of about to 200° to 550° F.; and a solution of a compound containing the metal which increases the corrosion resistance of the metal surface when present in the oxide film is injected into the water.
    Type: Application
    Filed: April 10, 2002
    Publication date: December 5, 2002
    Applicant: General Electric Company
    Inventors: Samson Hettiarachchi, Robert J. Law, David P. Siegwarth, Thomas P. Diaz, Robert L. Cowan
  • Publication number: 20020118787
    Abstract: Method for controlling erosion and cracking in a metal component of a nuclear reactor, particularly in the highly concentrated primary and secondary systems of a PWR, comprising creating a catalytic surface on the component; and generating a stoichiometric excess of reductant the water of the reactor to reduce the oxidant concentration at the surface to substantially zero.
    Type: Application
    Filed: May 1, 2002
    Publication date: August 29, 2002
    Applicant: General Electric Company.
    Inventors: Peter L. Andresen, Young Jin Kim, Robert L. Cowan, Robert J. Law, Samson Hettiarachchi
  • Publication number: 20020101953
    Abstract: Method for reducing corrosion of alloy components in a water cooled nuclear reactor or associated components comprising the step of injecting into the water of the reactor in the presence of zinc a noble metal cation-releasing compound which releases noble metal cations or cationic species containing noble metal species into the reactor water under operating reactor thermal conditions.
    Type: Application
    Filed: April 1, 2002
    Publication date: August 1, 2002
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Samson Hettiarachchi, David P. Siegwarth, Robert L. Cowan, Robert J. Law, Thomas P. Diaz
  • Publication number: 20020080906
    Abstract: Method for controlling erosion and cracking in a metal component of a nuclear reactor, particularly in the highly concentrated primary and secondary systems of a PWR, comprising creating a catalytic surface on the component; and generating a stoichiometric excess of reductant the water of the reactor to reduce the oxidant concentration at the surface to substantially zero.
    Type: Application
    Filed: December 21, 2000
    Publication date: June 27, 2002
    Inventors: Peter L. Andresen, Young Jin Kim, Robert L. Cowan, Robert J. Law, Samson N. M. N. Hettiarachchi
  • Patent number: 6086837
    Abstract: A method is described for synthesizing decaborane wherein at least about 90% of the boron atoms in the decaborane are the .sup.10 B isotope, comprising the steps of: (a) reacting boric acid with a C.sub.1 to C.sub.10 alkanol to form a .sup.10 B-alkyl borate wherein at least about 90% of the boron atoms in the boric acid are the .sup.10 B isotope; (b) reducing the .sup.10 B-alkyl borate to form an alkali metal .sup.10 B-borohydride; (c) converting the alkali metal .sup.10 B-borohydride to a .sup.10 B-tetradecahydroundecaborate ion; and (d) converting the .sup.10 B-tetradecahydroundecaborate ion to .sup.10 B-decaborane. Methods of preparing tetradecahydroundecaborate ions and decaborane from alkali metal borohydrides are also described.
    Type: Grant
    Filed: April 24, 1997
    Date of Patent: July 11, 2000
    Assignee: Bechtel BWXT Idaho, LLC
    Inventors: Robert L. Cowan, Daniel M. Ginosar, Gary B. Dunks
  • Patent number: 5625656
    Abstract: A method for ensuring the distribution of noble metal in the reactor circuit during plant application without measuring the reactor water for noble metal content by chemical analysis. The method involves the measurement of electrochemical corrosion potential in an autoclave or a high-flow test section that is connected to the reactor water circuit through sample lines downstream of the injection port, preferably the point in the reactor circuit which is furthest from the injection port. If the noble metal flows into the autoclave or test section at these distant points in the reactor circuit, then the noble metal will deposit on the test specimens inside the autoclave or test section.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 29, 1997
    Assignee: General Electric Company
    Inventors: Samson Hettiarachchi, Robert L. Cowan, II, Robert J. Law, Thomas P. Diaz
  • Patent number: 5608767
    Abstract: A device for generating direct current by neutron activation of a plurality of series-connected beta-emitter (nuclear decay electron) cells, located in the out-of-core region of a light water nuclear reactor. The device can be used as either a current source, or preferably configured as a DC voltage source, capable of powering low-power, radiation-hardened, high-temperature integrated circuitry contained in the reactor vessel. As such, the device acts like a DC battery that is activated by (n, .gamma.) reactions, both thermal and epithermal (by resonance capture). The device is not operable until exposed to a substantial neutron flux, so it has unlimited shelf-life and is not radioactive during manufacture In the preferred embodiment, an isotope of the metallic rare-earth element dysprosium is configured in a "sandwich" geometry to generate sufficient current that a useful steady voltage can be generated by means of a simple voltage regulation circuit.
    Type: Grant
    Filed: July 21, 1995
    Date of Patent: March 4, 1997
    Assignee: General Electric Company
    Inventors: James H. Terhune, Robert L. Cowan, II
  • Patent number: 5600691
    Abstract: A method for mitigating crack growth on the surface of stainless steel or other metal components in a water-cooled nuclear reactor. A compound containing a noble metal, e.g., palladium, is injected into the water of the reactor in the form of a solution or suspension. This compound has the property that it decomposes under reactor thermal conditions to release ions/atoms of the noble metal which incorporate in or deposit on the interior surfaces of the crack. The compound may be organic, organometallic (e.g., palladium acetylacetonate) or inorganic in nature. The palladium deposited inside a crack should exhibit catalytic behavior even if the bulk surface palladium is depleted under high fluid flow conditions. As a result, the electrochemical potential inside the crack is decreased to a level below the critical potential to protect against intergranular stress corrosion cracking.
    Type: Grant
    Filed: March 10, 1994
    Date of Patent: February 4, 1997
    Assignee: General Electric Company
    Inventors: Samson Hettiarachchi, Robert L. Cowan, II, Thomas P. Diaz, Gary P. Wozadlo
  • Patent number: 5515406
    Abstract: A passive catalytic ammonia converter operating in the water/steam mixture exiting the core of a boiling water reactor. The catalytic ammonia converter is made of catalytic material arranged and situated such that substantially all of the water/steam mixture entering the water/steam separator device flows over the surface of the catalytic material. The catalytic surfaces react ammonia and/or NO with O.sub.2 or H.sub.2 O.sub.2 in the water/steam mixture to form nitrite or nitrate. The passive catalytic ammonia converter is constructed to ensure that the pressure drop of the reactor water across the device is very small. The catalytic ammonia converter can include a plurality of stainless steel flow-through housings packed with catalytic ammonia converter material, which could take the form of tangled wire or strips, crimped ribbon, porous sintered metal composite or any other structure having a high surface area-to-volume ratio.
    Type: Grant
    Filed: May 21, 1993
    Date of Patent: May 7, 1996
    Assignee: General Electric Company
    Inventors: Robert L. Cowan, II, Gerald M. Gordon, Robert J. Law, Beth A. McAllister
  • Patent number: 5465278
    Abstract: A method and an apparatus for measuring the degree of intergranular stress corrosion cracking protection in the area of the core shroud weldments. Electrochemical potential sensors are attached to the shroud wall and the upper core spray line at locations near the actual weld surface of concern to ensure the accuracy of the electrochemical potential measurements. A working electrode doped or coated with noble metal and a reference electrode are implanted into the reactor core shroud. A throughhole is drilled or machined into the shroud wall at an elevation just below the top guide support ring, i.e., near the core shroud weldments. Then a plug containing the working and reference electrodes is inserted into the throughhole.
    Type: Grant
    Filed: May 23, 1994
    Date of Patent: November 7, 1995
    Assignee: General Electric Company
    Inventors: Robert L. Cowan, II, Gerald M. Gordon, Donald A. Hale, Richard W. Perry
  • Patent number: 5285486
    Abstract: A passive decomposer operating in the water/steam mixture exiting the core of a boiling water reactor. The decomposer comprises a catalytic material arranged and situated such that substantially all of the water/steam mixture entering the water/steam separator device flows over the surface of the catalytic material. The catalytic decomposing surfaces decompose hydrogen peroxide molecules dissolved in the liquid phase to form water and oxygen molecules. The passive catalytic decomposer is constructed to ensure that the pressure drop of the reactor water across the device is very small. The decomposer can include a plurality of stainless steel flow-through housings packed with stainless steel catalytic decomposer material, which could take the form of tangled wire or strips, crimped ribbon, porous sintered metal composite or any other structure having a high surface area-to-volume ratio.
    Type: Grant
    Filed: November 25, 1992
    Date of Patent: February 8, 1994
    Assignee: General Electric Company
    Inventors: Robert L. Cowan, II, Robert J. Law, James E. Charnley
  • Patent number: 4992232
    Abstract: In a boiling water reactor nuclear plant, hydrogen is injected into the feed water to neutralize radiolysis which causes stress corrosion in stainless steel components. It has been discovered that by inhibiting volatile ammonia, and other gaseous nitrogen compounds from leaving the liquid phase portions of the plant to the steam phase portions of the plant, radiation is reduced to acceptable levels. Formation of ammonia is inhibited chemically, by altering the reaction paths for volatile nitrogen species with trace additives in the parts per billion range, suitable additives include nitrous oxide, copper, zinc, carbon dioxide, and other components. It has also been found that by manipulating the pH, the formation of the voltage nitrogen compounds, especially ammonia, is decreased. Similarly, by physically altering plant operating conditions to reduce sparging or scrubbing of the gases from areas of high radiation, confinement of the N-16 within the liquid phase of the plant within the reactor vessel occurs.
    Type: Grant
    Filed: July 17, 1989
    Date of Patent: February 12, 1991
    Assignee: General Electric Company
    Inventors: Robert L. Cowan, II, Dragomir Duitna, Robert J. Law, Chien-Chang Lin, Carl P. Ruiz, James L. Simpson
  • Patent number: 4882122
    Abstract: In a boiling water reactor, provision is made to sample the core bypass region immediate the top guide to determine the physical and chemical constituents of the moderating water. A conduit for a local power range monitor is fitted with a measurement assembly. The conduit and measurement assembly are inserted up to the vicinity of the top guide. A tube opening is provided to the bypass region immediate the top guide. During reactor operation, the saturated liquid in this region flashes to a steam water mixture (18% steam) at constant enthalpy and is rapidly removed from the reactor to measuring equipment in the reactor building. During removal, the radiolytic disassociated gases (namely hydrogen and oxygen) partition to the steam phase where their recombination is retarded and accurate measurement of their constituent content can be made. Also, temperature of the steam water mixture decreases thereby preserving unstable species like hydrogen peroxide that degrade much more rapidly a high temperatures.
    Type: Grant
    Filed: February 10, 1988
    Date of Patent: November 21, 1989
    Assignee: General Electric Company
    Inventors: Robert A. Head, Robert L. Cowan, Robert J. Law
  • Patent number: D679371
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: April 2, 2013
    Assignee: Infrared Dynamics, Inc.
    Inventors: Jerome T. Luna, Robert L. Cowan