Patents by Inventor Robert L. Rosson

Robert L. Rosson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8890077
    Abstract: Various embodiments of the present invention provide a method of detecting inaccessible radiation sources by measuring corresponding ions and excited molecules created by radiation, using LIDAR technology. The LIDAR system of the present invention employs a pulsed laser transmitter, a telescope receiver, and associated control and acquisition systems. Light propagates out from the laser transmitted and is directed into the volume surrounding the radioactive source, or the “ion cloud.” The ion cloud absorbs the transmitted light, which induces the non-fluorescing ions to fluoresce. Light from the ion cloud is then backscattered and the telescope receiver subsequently collects the photons from the backscattered light. The intensity of the fluorescence (determined by the photon count) is measured, which provides an indication of the number density of the ionized atoms. Algorithms can then be used to relate the measured ionization rates to the source activity.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: November 18, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Robert L. Rosson, Bernd Kahn, Brent Wagner, David Roberts
  • Publication number: 20120112076
    Abstract: Various embodiments of the present invention provide a method of detecting inaccessible radiation sources by measuring corresponding ions and excited molecules created by radiation, using LIDAR technology. The LIDAR system of the present invention employs a pulsed laser transmitter, a telescope receiver, and associated control and acquisition systems. Light propagates out from the laser transmitted and is directed into the volume surrounding the radioactive source, or the “ion cloud.” The ion cloud absorbs the transmitted light, which induces the non-fluorescing ions to fluoresce. Light from the ion cloud is then backscattered and the telescope receiver subsequently collects the photons from the backscattered light. The intensity of the fluorescence (determined by the photon count) is measured, which provides an indication of the number density of the ionized atoms. Algorithms can then be used to relate the measured ionization rates to the source activity.
    Type: Application
    Filed: August 4, 2010
    Publication date: May 10, 2012
    Applicant: Georgia Tech Research Corporation
    Inventors: Robert L. Rosson, Bernd Kahn, Brent Wagner, David Roberts