Patents by Inventor Robert Lee Cowan, II

Robert Lee Cowan, II has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6415010
    Abstract: A metal cooling tube of a water-cooled nuclear reactor, having an inner surface thereof exposed to an aqueous cooling medium containing hydrogen peroxide. The cooling tube has its inner surface coated with matter selected from the group consisting of the element manganese, molybdenum, zinc, copper, cadmium for absorbing such hydrogen peroxide and then affecting decomposition of the hydrogen peroxide in the aqueous medium. In preferred embodiment such coating is manganese and oxides thereof. A method for lowering the electrochemical corrosion potential of a metal allow cooling tube exposed to an aqueous medium in a water-cooled nuclear reactor is also disclosed. Such method comprises the step of coating an inner surface of such tube with matter selected from the group of elements comprising manganese, molybdenum, zinc, copper, cadmium, so as to permit absorption and hydrogen peroxide in such aqueous medium and effect decomposition of hydrogen peroxide in such aqueous medium.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: July 2, 2002
    Assignee: General Electric Company
    Inventors: Young Jin Kim, Leonard William Niedrach, George Charles Sogoian, Robert Lee Cowan, II
  • Patent number: 6259758
    Abstract: A metal cooling tube of a water-cooled nuclear reactor, having an inner surface thereof exposed to an aqueous cooling medium containing hydrogen peroxide. The cooling tube has its inner surface coated with matter selected from the group consisting of the element manganese, molybdenum, zinc, copper, cadmium for absorbing such hydrogen peroxide and then affecting decomposition of the hydrogen peroxide in the aqueous medium. In preferred embodiment such coating is manganese and oxides thereof. A method for lowering the electrochemical corrosion potential of a metal allow cooling tube exposed to an aqueous medium in a water-cooled nuclear reactor is also disclosed. Such method comprises the step of coating an inner surface of such tube with matter selected from the group of elements comprising manganese, molybdenum, zinc, copper, cadmium, so as to permit absorption and hydrogen peroxide in such aqueous medium and effect decomposition of hydrogen peroxide in such aqueous medium.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: July 10, 2001
    Assignee: General Electric Company
    Inventors: Young Jin Kim, Leonard William Niedrach, George Charles Sogoian, Robert Lee Cowan, II
  • Patent number: 5805653
    Abstract: A method for mitigating crack growth on the surface of stainless steel or other metal components in a water-cooled nuclear reactor. A compound containing a noble metal, e.g., palladium, is injected into the water of the reactor in the form of a solution or suspension. This compound has the property that it decomposes under reactor thermal conditions to release ions/atoms of the noble metal which incorporate in or deposit on the interior surfaces of the crack. The compound may be organic, organometallic (e.g., palladium acetylacetonate) or inorganic in nature. The palladium deposited inside a crack should exhibit catalytic behavior even if the bulk surface palladium is depleted under high fluid flow conditions. As a result, the electrochemical potential inside the crack is decreased to a level below the critical potential to protect against intergranular stress corrosion cracking.
    Type: Grant
    Filed: October 10, 1996
    Date of Patent: September 8, 1998
    Assignee: General Electric Company
    Inventors: Samson Hettiarachchi, Robert Lee Cowan, II, Thomas Pompilio Diaz, Gary Paul Wozadlo
  • Patent number: 5793830
    Abstract: A method for mitigating crack initiation and propagation on the surface of metal components in a water-cooled nuclear reactor. A metal coating having an electrically insulating outer layer is applied on the surfaces of IGSCC-susceptible reactor components. The preferred metal coating is a zirconium alloy with a zirconia outer layer. The presence of an electrically insulating layer on the surface of the metal components shifts the corrosion potential in the negative direction without the addition of hydrogen and in the absence of a noble metal catalyst. Corrosion potentials.ltoreq.-0.5 V.sub.SHE can be achieved even at high oxidant concentrations and in the absence of hydrogen.
    Type: Grant
    Filed: July 3, 1995
    Date of Patent: August 11, 1998
    Assignee: General Electric Company
    Inventors: Young Jin Kim, Peter Louis Andresen, Robert Lee Cowan, II
  • Patent number: 5719911
    Abstract: A system for ensuring the distribution of noble metal in the reactor circuit during plant application without measuring the reactor water for noble metal content by chemical analysis. The system performs the measurement of electrochemical corrosion potential in an autoclave or a high-flow test section that is connected to the reactor water circuit through sample lines downstream of the injection port, preferably the point in the reactor circuit which is furthest from the injection port. If the noble metal flows into the autoclave or test section at these distant points in the reactor circuit, then the noble metal will deposit on the test specimens inside the autoclave or test section.
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: February 17, 1998
    Assignee: General Electric Company
    Inventors: Samson Hettiarachchi, Robert Lee Cowan, II, Robert James Law, Thomas Pompilio Diaz
  • Patent number: 5287392
    Abstract: An internal passive catalytic device operating in the water phase of a boiling water reactor vessel downstream of the steam/water separator location. The device consists of catalytic material arranged and situated such that all (except perhaps a small leakage flow) water phase exiting the water/steam separator device flows over the surface of the catalytic material. The catalytic surfaces decompose dissolved hydrogen peroxide into water and oxygen. When the substrate of the catalytic material is plated or alloyed with a water recombination catalyst such as a noble metal, the catalytic surfaces also catalyze the recombination of dissolved hydrogen and oxygen molecules into water. The passive catalytic device is constructed to ensure that the pressure drop of the reactor water across the device is very small.
    Type: Grant
    Filed: November 25, 1992
    Date of Patent: February 15, 1994
    Assignee: General Electric Company
    Inventors: Robert Lee Cowan II, Robert J. Law, James E. Charnley, Robert J. Brandon