Patents by Inventor Robert M. Ohline

Robert M. Ohline has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8888688
    Abstract: A connector assembly for controllable articles is described herein. The connector assembly engages force transmission elements used to transmit force from one or more force generators with the force transmission elements used to manipulate a controllable article. Additionally, the connector assembly provides organization thereby simplifying the process of connecting a plurality of elements, usually with a quick, single movement.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: November 18, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Christopher A. Julian, Amir Belson, Aaron W. Brown, Mark Harasym, Marc S. Kreidler, Robert M. Ohline, Scott J. Reiner, Enrique Romo, Charles E. Swinehart, Katherine Whitin
  • Patent number: 8882657
    Abstract: One RFID equipped instrument includes an elongate body with a plurality of uniquely identified radio frequency identification chips spaced along the length of the elongate body. One system used for determining the position of an instrument includes an instrument; a plurality of radio frequency identification chips attached to the instrument; a reader connected to an antenna and adapted to communicate with each radio frequency identification chip using the antenna. One method for determining the position of an instrument using radio frequency identification chips includes providing a radio frequency identification chip reader and antenna; providing an instrument having a longitudinal axis and comprising a plurality of radio frequency identification chips placed along the longitudinal axis; moving the instrument relative to the antenna; and using information about a radio frequency identification chip detected by the antenna to determine the position of the instrument.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: November 11, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Robert M. Ohline, Katherine Whitin, Amir Belson, Christopher D. Justice
  • Publication number: 20140330080
    Abstract: The present invention relates, generally, to controlling a steerable instrument having an elongate body. More particularly, the present invention relates to a system and method for sensing the shape of a steerable instrument and controlling the steerable instrument in response to a control signal from a user input device and a shape signal corresponding to the sensed shape of at least a portion of the steerable instrument. The present invention also relates to a system for sensing the shape of a flexible instrument with an optical shape sensor.
    Type: Application
    Filed: June 12, 2014
    Publication date: November 6, 2014
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Keith P. LABY, Robert M. OHLINE, Christoph M. PISTOR, Charles E. SWINEHART, Bruce R. WOODLEY, Amir BELSON
  • Patent number: 8784303
    Abstract: The present invention relates, generally, to controlling a steerable instrument having an elongate body. More particularly, the present invention relates to a system and method for sensing the shape of a steerable instrument and controlling the steerable instrument in response to a control signal from a user input device and a shape signal corresponding to the sensed shape of at least a portion of the steerable instrument. The present invention also relates to a system for sensing the shape of a flexible instrument with an optical shape sensor.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: July 22, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Keith P. Laby, Robert M. Ohline, Christoph M. Pistor, Charles E. Swinehart, Bruce R. Woodley, Amir Belson
  • Patent number: 8721530
    Abstract: A steerable, tendon-driven endoscope is described herein. The endoscope has an elongated body with a manually or selectively steerable distal portion and an automatically controlled, segmented proximal portion. The steerable distal portion and the segment of the controllable portion are actuated by at least two tendons. As the endoscope is advanced, the user maneuvers the distal portion, and a motion controller actuates tendons in the segmented proximal portion so that the proximal portion assumes the selected curve of the selectively steerable distal portion. By this method the selected curves are propagated along the endoscope body so that the endoscope largely conforms to the pathway selected. When the endoscope is withdrawn proximally, the selected curves can propagate distally along the endoscope body. This allows the endoscope to negotiate tortuous curves along a desired path through or around and between organs within the body.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: May 13, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Robert M. Ohline, Joseph M. Tartaglia, Amir Belson, Alex T. Roth, Wade A. Keller, Scott C. Anderson, Christopher A. Julian
  • Publication number: 20120167878
    Abstract: A therapeutic treatment system has a delivery device is adapted to deliver a cooled breathing gas mixture to a patient and an injection device positioned near a distal end of the delivery device. The injection device is coupled to a source of liquid. The treatment system also includes a control system coupled to the delivery device and the injection device. Alternatively, the control system is adapted to control the injection device to release a fluid into the cooled breathing gas mixture to form a frozen mist of fine ice particles in the cooled breathing gas mixture.
    Type: Application
    Filed: December 2, 2009
    Publication date: July 5, 2012
    Applicant: ThermoCure, Inc,
    Inventors: Amir Belson, Robert M. Ohline, Nimrod Tzori
  • Publication number: 20110306836
    Abstract: A steerable, tendon-driven endoscope is described herein. The endoscope has an elongated body with a manually or selectively steerable distal portion and an automatically controlled, segmented proximal portion. The steerable distal portion and the segment of the controllable portion are actuated by at least two tendons. As the endoscope is advanced, the user maneuvers the distal portion, and a motion controller actuates tendons in the segmented proximal portion so that the proximal portion assumes the selected curve of the selectively steerable distal portion. By this method the selected curves are propagated along the endoscope body so that the endoscope largely conforms to the pathway selected. When the endoscope is withdrawn proximally, the selected curves can propagate distally along the endoscope body. This allows the endoscope to negotiate tortuous curves along a desired path through or around and between organs within the body.
    Type: Application
    Filed: July 11, 2011
    Publication date: December 15, 2011
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Robert M. Ohline, Joseph M. Tartaglia, Amir Belson, Alex T. Roth, Wade A. Keller, Scott C. Anderson, Christopher A. Julian
  • Publication number: 20100099951
    Abstract: The present invention relates, generally, to controlling a steerable instrument having an elongate body. More particularly, the present invention relates to a system and method for sensing the shape of a steerable instrument and controlling the steerable instrument in response to a control signal from a user input device and a shape signal corresponding to the sensed shape of at least a portion of the steerable instrument. The present invention also relates to a system for sensing the shape of a flexible instrument with an optical shape sensor.
    Type: Application
    Filed: January 29, 2008
    Publication date: April 22, 2010
    Inventors: Keith P. Laby, Robert M. Ohline, Christoph M. Pistor, Charles E. Swinehart, Bruce R. Woodley, Amir Belson
  • Publication number: 20100094088
    Abstract: A steerable, tendon-driven endoscope is described herein. The endoscope has an elongated body with a manually or selectively steerable distal portion and an automatically controlled, segmented proximal portion. The steerable distal portion and the segment of the controllable portion are actuated by at least two tendons. As the endoscope is advanced, the user maneuvers the distal portion, and a motion controller actuates tendons in the segmented proximal portion so that the proximal portion assumes the selected curve of the selectively steerable distal portion. By this method the selected curves are propagated along the endoscope body so that the endoscope largely conforms to the pathway selected. When the endoscope is withdrawn proximally, the selected curves can propagate distally along the endoscope body. This allows the endoscope to negotiate tortuous curves along a desired path through or around and between organs within the body.
    Type: Application
    Filed: April 16, 2009
    Publication date: April 15, 2010
    Inventors: Robert M. Ohline, Joseph M. Tartaglia, Amir Belson, Alex T. Roth, Wade A. Keller, Scott C. Anderson, Christopher A. Julian
  • Patent number: 6858005
    Abstract: A steerable, tendon-driven endoscope is described herein. The endoscope has an elongated body with a manually or selectively steerable distal portion and an automatically controlled, segmented proximal portion. The steerable distal portion and the segment of the controllable portion are actuated by at least two tendons. As the endoscope is advanced, the user maneuvers the distal portion, and a motion controller actuates tendons in the segmented proximal portion so that the proximal portion assumes the selected curve of the selectively steerable distal portion. By this method the selected curves are propagated along the endoscope body so that the endoscope largely conforms to the pathway selected. When the endoscope is withdrawn proximally, the selected curves can propagate distally along the endoscope body. This allows the endoscope to negotiate tortuous curves along a desired path through or around and between organs within the body.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: February 22, 2005
    Assignee: Neo Guide Systems, Inc.
    Inventors: Robert M. Ohline, Joseph M. Tartaglia, Amir Belson, Alex T. Roth, Wade A. Keller, Scott C. Anderson, Chris A. Julian
  • Publication number: 20040176683
    Abstract: Methods and apparatus for tracking insertion depth of endoscopes are described herein. One method for determining endoscopic insertion depth within a body is to utilize a fully instrumented endoscope configured to determine its depth of insertion. Another method uses a datum device which interacts with the endoscope to determine how much of the endoscope has passed by a reference boundary. A fully instrumented endoscope can poll the status of the entire endoscope and then determine its position relative to anatomical boundaries, e.g., the anus. The polled information is obtained by sensors or transponders located along the length of the endoscope. When using an endoscope with a datum, the datum can read positional information by polling the status of sensors or transponders located along the body of the endoscope as the endoscope passes through the anus. The datum can be affixed to the patient or to another fixed reference point.
    Type: Application
    Filed: March 7, 2003
    Publication date: September 9, 2004
    Inventors: Katherine Whitin, Robert M. Ohline, Amir Belson, Alex Roth, Lawrence W. Arne
  • Publication number: 20030045778
    Abstract: A steerable, tendon-driven endoscope is described herein. The endoscope has an elongated body with a manually or selectively steerable distal portion and an automatically controlled, segmented proximal portion. The steerable distal portion and the segment of the controllable portion are actuated by at least two tendons. As the endoscope is advanced, the user maneuvers the distal portion, and a motion controller actuates tendons in the segmented proximal portion so that the proximal portion assumes the selected curve of the selectively steerable distal portion. By this method the selected curves are propagated along the endoscope body so that the endoscope largely conforms to the pathway selected. When the endoscope is withdrawn proximally, the selected curves can propagate distally along the endoscope body. This allows the endoscope to negotiate tortuous curves along a desired path through or around and between organs within the body.
    Type: Application
    Filed: August 27, 2002
    Publication date: March 6, 2003
    Inventors: Robert M. Ohline, Joseph M. Tartaglia, Amir Belson, Alex T. Roth, Wade A. Keller, Scott C. Anderson, Chris A. Julian