Patents by Inventor Robert M. Porter, Jr.

Robert M. Porter, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200313567
    Abstract: An apparatus utilizing additive interleaved switchmode (PWM) power conversion stages, having minimal or no output filter, to achieve high bandwidth or even ideally instantaneous power conversion. The additive process may involve voltage stacking of isolated PWM converters, which are interleaved in time, or may involve a single input power supply and inductively combining output currents of PWM power converters interleaved in time, with either additive circuit having minimal or no output filtering. This circuit may overcome limitations for the frequency of feedback control loops once thought to be physical limitations, such as, fundamental switching frequency, output filter delay and the Nyquist criteria.
    Type: Application
    Filed: April 13, 2020
    Publication date: October 1, 2020
    Inventors: Robert M. Porter, JR., John Dorrenbacher, Faleh Alskran
  • Patent number: 10658945
    Abstract: An apparatus utilizing additive interleaved switchmode (PWM) power conversion stages, having minimal or no output filter, to achieve high bandwidth or even ideally instantaneous power conversion. The additive process may involve voltage stacking of isolated PWM converters, which are interleaved in time, or may involve a single input power supply and inductively combining output currents of PWM power converters interleaved in time, with either additive circuit having minimal or no output filtering. This circuit may overcome limitations for the frequency of feedback control loops once thought to be physical limitations, such as, fundamental switching frequency, output filter delay and the Nyquist criteria.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: May 19, 2020
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Robert M. Porter, Jr., John Dorrenbacher
  • Publication number: 20200153360
    Abstract: An apparatus utilizing additive interleaved switchmode (PWM) power conversion stages, having minimal or no output filter, to achieve high bandwidth or even ideally instantaneous power conversion. The additive process may involve voltage stacking of isolated PWM converters, which are interleaved in time, or may involve a single input power supply and inductively combining output currents of PWM power converters interleaved in time, with either additive circuit having minimal or no output filtering. This circuit may overcome limitations for the frequency of feedback control loops once thought to be physical limitations, such as, fundamental switching frequency, output filter delay and the Nyquist criteria.
    Type: Application
    Filed: July 9, 2019
    Publication date: May 14, 2020
    Inventors: Robert M. Porter, JR., John Dorrenbacher
  • Patent number: 10447174
    Abstract: An apparatus utilizing additive interleaved switchmode (PWM) power conversion stages, having minimal or no output filter, to achieve high bandwidth or even ideally instantaneous power conversion. The additive process may involve voltage stacking of isolated PWM converters, which are interleaved in time, or may involve a single input power supply and inductively combining output currents of PWM power converters interleaved in time, with either additive circuit having minimal or no output filtering. This circuit may overcome limitations for the frequency of feedback control loops once thought to be physical limitations, such as, fundamental switching frequency, output filter delay and the Nyquist criteria.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: October 15, 2019
    Assignee: ADVANCED ENERGY INDUSTRIES, INC.
    Inventors: Robert M. Porter, Jr., John Dorrenbacher
  • Patent number: 6384540
    Abstract: A high power radio frequency power method of amplifications described in which a variety of amplifiers (60 & 86) may be used to reduce the stress any one amplifier experiences. The power leads (64 & 65) may be arranged in a series to power each amplifier at potentials which are lower than the total potential. Outputs (63) may then be connected in a parallel fashion to combine the power output by the system. A variety of unique stabilization, drive, division, combination, and supply configurations are presented as well as the possibility of utilization and adaptation of the designs for a plasma processing system. An aspect of tiered combining is included such as may be especially appropriate for larger numbers of devices which may include switchmode amplifiers and the like.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: May 7, 2002
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Robert M. Porter, Jr., Anatoli V. Ledenev, Gennady G. Gurov
  • Patent number: 5187580
    Abstract: Disclosed are both methods and a circuit to achieve powers of many kilowatts in radio frequency amplification using a switch mode amplifier in a new class of operation. In operation the invention utilizes internal switch characteristics. Methods create a substantial voltage step at the end of a response time period which allows greater output power without increasing the maximum switch voltage, reduces the maximum switch voltage for the same power, and which permits reduction of the stress on the switch element. Utilization of internal varactor capacitance avoids undesirable circulating currents and avoids the effects of lead inductance. The design allows use of less expensive components and high voltage switches not manufactured for radio frequency applications by preferring a substantial internal capacitance to establish maximum power. Other components of the network circuitry are also coordinated with the internal varactor capacitance.
    Type: Grant
    Filed: July 6, 1992
    Date of Patent: February 16, 1993
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Robert M. Porter, Jr., Michael L. Mueller