Patents by Inventor Robert Scott Duthie

Robert Scott Duthie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11834670
    Abstract: A method of site-specific modification of an endogenous target DNA of a eukaryotic cell is provided. The method includes contacting the endogenous target DNA having an intended modification site with (i) a gene editing system configured to introduce a double strand break in the endogenous target DNA at or near the intended modification site, and (ii) a donor DNA repair template comprising a plurality of tandem repeat sequences. In the method, each of the plurality of tandem repeat sequences comprises an exogenous donor DNA sequence flanked by a donor 5? flanking sequence and a donor 3? flanking sequence. The donor 5? flanking sequence and the donor 3? flanking sequence are homologous to a continuous DNA sequence on either side of the intended modification site in the endogenous target DNA.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: December 5, 2023
    Assignee: GLOBAL LIFE SCIENCES SOLUTIONS USA LLC
    Inventors: John Richard Nelson, Robert Scott Duthie, Patrick McCoy Spooner, John Anthony Schiel, Lisa Anne Lowery, Anja Josifa Smith
  • Publication number: 20220389473
    Abstract: Methods for in vitro transcription and translation from an RCA product are provided. The methods comprise providing a double-stranded RCA product, wherein the double-stranded RCA product consists essentially of tandem repeats of a minimalistic expression sequence. The methods further comprise expressing a protein from the double-stranded RCA product in a cell-free expression system.
    Type: Application
    Filed: July 19, 2022
    Publication date: December 8, 2022
    Inventors: John Richard Nelson, Robert Scott Duthie, Erik Leeming Kvam, Wei Gao
  • Patent number: 11421259
    Abstract: Methods for in vitro transcription and translation from an RCA product are provided. The methods comprise providing a double-stranded RCA product, wherein the double-stranded RCA product consists essentially of tandem repeats of a minimalistic expression sequence. The methods further comprise expressing a protein from the double-stranded RCA product in a cell-free expression system.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: August 23, 2022
    Assignee: Global Life Sciences Solutions Operations UK Ltd
    Inventors: John Richard Nelson, Robert Scott Duthie, Erik Leeming Kvam, Wei Gao
  • Patent number: 11268116
    Abstract: Disclosed are methods and kits for endonuclease-assisted DNA amplification reaction using decontaminated primer solutions that are pre-treated with a nuclease. Nucleic acid amplification assays that employ nuclease-resistant, inosine-containing primers, endonuclease V enzymes to introduce a nick into a target DNA comprising at least one inosine, and a DNA polymerase to generate amplicons of a target DNA are also disclosed.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: March 8, 2022
    Assignee: GLOBAL LIFE SCIENCES SOLUTIONS OPERATIONS UK LTD
    Inventors: Robert Scott Duthie, John Richard Nelson, Anuradha Sekher
  • Patent number: 10518196
    Abstract: A separation device, system and associated method are provided herein for separation of particulates form a base fluid. The separation device comprises a first microchannel comprising a fluid inlet and a mesofluidic collection chamber. The mesofluidic collection chamber has a first side and a second side, wherein the mesofluidic collection chamber is operatively coupled to the first microchannel on the first side, and wherein the mesofluidic collection chamber comprises a first fluid outlet at the second side, such that the fluid inlet, first microchannel, and first fluid outlet are in fluidic communication via the mesofluidic collection chamber.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: December 31, 2019
    Assignee: General Electric Company
    Inventors: Christopher Michael Puleo, Craig Patrick Galligan, Gregory Andrew Grossman, Erik Leeming Kvam, Robert Scott Duthie, Kenneth Wayne Rigby, Paul Michael Smigelski, Jr., Victoria Eugenia Cotero, Jason William Castle, John Donald Burczak, James Edward Rothman
  • Patent number: 10472620
    Abstract: A method is provided herein, the method includes: applying a sample comprising target nucleic acids to a sample application zone of a substrate; and flowing a nucleic acid amplification reaction mixture across a length of the substrate through the sample application zone to amplify the target nucleic acid forming a nucleic acid amplification product; wherein the target nucleic acid having a first molecular weight is substantially immobilized at the sample application zone and wherein the amplification product having a second molecular weight migrates away from the sample application zone. An associated device is also provided.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: November 12, 2019
    Assignee: General Electric Company
    Inventors: John Richard Nelson, David Roger Moore, Robert Scott Duthie, Matthew Jeremiah Misner, Gregory Andrew Grossmann, Elizabeth Marie Dees, Patrick McCoy Spooner, Erik Leeming Kvam, Andrew Arthur Paul Burns, Vicki Herzl Watkins
  • Publication number: 20190071704
    Abstract: Methods for in vitro transcription and translation from an RCA product are provided. The methods comprise providing a double-stranded RCA product, wherein the double-stranded RCA product consists essentially of tandem repeats of a minimalistic expression sequence. The methods further comprise expressing a protein from the double-stranded RCA product in a cell-free expression system.
    Type: Application
    Filed: July 20, 2018
    Publication date: March 7, 2019
    Inventors: John Richard Nelson, Robert Scott Duthie, Erik Leeming Kvam, Wei Gao
  • Publication number: 20190062795
    Abstract: Disclosed are methods and kits for endonuclease-assisted DNA amplification reaction using decontaminated primer solutions that are pre-treated with a nuclease. Nucleic acid amplification assays that employ nuclease-resistant, inosine-containing primers, endonuclease V enzymes to introduce a nick into a target DNA comprising at least one inosine, and a DNA polymerase to generate amplicons of a target DNA are also disclosed.
    Type: Application
    Filed: March 30, 2018
    Publication date: February 28, 2019
    Inventors: Robert Scott Duthie, John Richard Nelson, Anuradha Sekher
  • Publication number: 20180305718
    Abstract: A method of site-specific modification of an endogenous target DNA of a eukaryotic cell is provided. The method includes contacting the endogenous target DNA having an intended modification site with (i) a gene editing system configured to introduce a double strand break in the endogenous target DNA at or near the intended modification site, and (ii) a donor DNA repair template comprising a plurality of tandem repeat sequences. In the method, each of the plurality of tandem repeat sequences comprises an exogenous donor DNA sequence flanked by a donor 5? flanking sequence and a donor 3? flanking sequence. The donor 5? flanking sequence and the donor 3? flanking sequence are homologous to a continuous DNA sequence on either side of the intended modification site in the endogenous target DNA.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 25, 2018
    Inventors: John Richard Nelson, Robert Scott Duthie, Patrick McCoy Spooner, John Anthony Schiel, Lisa Anne Lowery, Anja Josifa Smith
  • Patent number: 10100292
    Abstract: Provided herein are mutant endonuclease V enzymes that are capable of nicking an inosine-containing DNA sequence. Nucleic acid assays and agents that employ such mutant endonuclease V enzymes to introduce a nick into a target DNA including one or more inosine, and uses a DNA polymerase to generate amplicons of a target DNA are also described.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 16, 2018
    Assignee: General Electric Company
    Inventors: John Richard Nelson, Robert Scott Duthie, Gregory Andrew Grossman, Anuradha Sekher
  • Publication number: 20180273914
    Abstract: The present disclosure generally relates to a method and device for inactivation and dry storage, under ambient conditions, of a biological sample containing RNA virus. Methods for collecting and recovering RNA from a biological sample and subsequent analysis for a virus are also provided.
    Type: Application
    Filed: June 11, 2018
    Publication date: September 27, 2018
    Inventors: Erik Leeming Kvam, Robert Scott Duthie, John Richard Nelson
  • Patent number: 10077459
    Abstract: Methods for in vitro transcription and translation from an RCA product are provided. The methods comprise providing a double-stranded RCA product, wherein the double-stranded RCA product consists essentially of tandem repeats of a minimalistic expression sequence. The methods further comprise expressing a protein from the double-stranded RCA product in a cell-free expression system.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: September 18, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Robert Scott Duthie, Erik Leeming Kvam, Wei Gao
  • Patent number: 10000742
    Abstract: The present disclosure generally relates to a method and device for inactivation and dry storage, under ambient conditions, of a biological sample containing RNA virus. Methods for collecting and recovering RNA from a biological sample and subsequent analysis for a virus are also provided.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: June 19, 2018
    Assignee: General Electric Company
    Inventors: Erik Leeming Kvam, Robert Scott Duthie, John Richard Nelson
  • Patent number: 9951379
    Abstract: Provided herein are nucleic acid synthesis methods and agents that employ an endonuclease for example, endonuclease V, to introduce a nick into a target DNA including one or more inosine, and uses a DNA polymerase to generate amplicons of the target DNA.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 24, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Robert Scott Duthie, Carl Williams Fuller, Gregory Andrew Grossmann, Anuradha Sekher
  • Publication number: 20180001231
    Abstract: A separation device, system and associated method are provided herein for separation of particulates form a base fluid. The separation device comprises a first microchannel comprising a fluid inlet and a mesofluidic collection chamber. The mesofluidic collection chamber has a first side and a second side, wherein the mesofluidic collection chamber is operatively coupled to the first microchannel on the first side, and wherein the mesofluidic collection chamber comprises a first fluid outlet at the second side, such that the fluid inlet, first microchannel, and first fluid outlet are in fluidic communication via the mesofluidic collection chamber.
    Type: Application
    Filed: July 13, 2016
    Publication date: January 4, 2018
    Inventors: Christopher Michael Puleo, Craig Patrick Galligan, Gregory Andrew Grossmann, Erik Leeming Kvam, Robert Scott Duthie, Kenneth Wayne Rigby, Paul Michael Smigelski, JR., Victoria Eugenia Cotero, Jason William Castle, John Donald Burczak, James Edward Rothman
  • Publication number: 20170321239
    Abstract: Methods for in vitro transcription and translation from an RCA product are provided. The methods comprise providing a double-stranded RCA product, wherein the double-stranded RCA product consists essentially of tandem repeats of a minimalistic expression sequence. The methods further comprise expressing a protein from the double-stranded RCA product in a cell-free expression system.
    Type: Application
    Filed: May 4, 2016
    Publication date: November 9, 2017
    Inventors: John Richard Nelson, Robert Scott Duthie, Erik Leeming Kvam, Wei Gao
  • Publication number: 20170298415
    Abstract: A method is provided for generating single-stranded DNA circles from a biological sample. The method comprises the steps of: treating the biological sample with an extractant to release nucleic acids, thereby forming a sample mixture; neutralizing the extractant; denaturing the released nucleic acids to generate single-stranded nucleic acids; and contacting the single-stranded nucleic acids with a ligase that is capable of template-independent, intramolecular ligation of single-stranded DNA to generate the single-stranded DNA circles. All the steps of the method are performed without any intermediate nucleic acid isolation or nucleic acid purification. The single-stranded DNA circles may be amplified and further analyzed. Also provided is a kit which comprises compositions for carrying out the novel methods.
    Type: Application
    Filed: September 17, 2015
    Publication date: October 19, 2017
    Applicant: GE Healthcare Bio-Sciences Corp.
    Inventors: Ryan Charles Heller, Nichole Lea Wood, Robert Scott Duthie, John Richard Nelson, Wei Gao, Michael James Rishel, Klaus Gustav Hentrich
  • Patent number: 9777319
    Abstract: A method of amplifying RNA template is provided. The method comprises reverse-transcribing a ribonucleic acid (RNA) template to form a cDNA using a first reaction mixture comprising RNA template, at least one primer capable of hybridizing to the RNA template, a reverse transcriptase and deoxynucleoside triphosphates (dNTPs); and amplifying the cDNA to form an amplified product using a second reaction mixture comprising at least one strand displacement DNA polymerase, at least one inosine-containing primer and a nuclease that is capable of nicking DNA 3? to an inosine residue of the primer. The method is accomplished under an isothermal condition without denaturing the cDNA template. A method of quantifying RNA template in a sample and a method of detecting RNA template in a sample are also provided.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: October 3, 2017
    Assignee: General Electric Company
    Inventors: John Richard Nelson, Robert Scott Duthie, Gregory Andrew Grossmann, Ryan Charles Heller
  • Publication number: 20170145387
    Abstract: The present disclosure generally relates to a method and device for inactivation and dry storage, under ambient conditions, of a biological sample containing RNA virus. Methods for collecting and recovering RNA from a biological sample and subsequent analysis for a virus are also provided.
    Type: Application
    Filed: November 19, 2015
    Publication date: May 25, 2017
    Inventors: Erik Leeming Kvam, Robert Scott Duthie, John Richard Nelson
  • Patent number: 9593368
    Abstract: A method is provided herein, the method includes: applying a sample comprising target nucleic acids to a sample application zone of a substrate; applying an aqueous buffer to the sample application zone of the substrate to washes away one or more inhibitors present on the sample application zone; and applying an isothermal nucleic acid amplification reaction mixture to the sample application zone to amplify the target nucleic acid to form a nucleic acid amplification product. The target nucleic acid having a first molecular weight is substantially immobilized at the sample application zone and wherein the amplification product having a second molecular weight.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: March 14, 2017
    Assignee: General Electric Company
    Inventors: John Richard Nelson, Robert Scott Duthie, Christopher Michael Puleo, Patrick McCoy Spooner