Patents by Inventor Robert Stobie

Robert Stobie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8202314
    Abstract: A holder for a flexible leaflet prosthetic aortic heart valve that is less bulky than earlier holders and minimizes obstructions to vision and working space around the valve to facilitate implantation thereof. The holder may have a central hub and three outwardly extending legs that connect directly and exclusively to tips of the commissures of the aortic heart valve for better tactile feedback when parachuting and seating the valve in the annulus. The legs are sized so that they do not overlap the commissure tips and therefore afford a better view of the sewing ring adjacent the commissures. The legs may be narrow in the midsection or split into two rails to increase visibility of the valve leaflets. The hub may be vaulted axially upward relative to the outer ends of the legs to further increase visibility of the valve.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: June 19, 2012
    Assignee: Edwards Lifesciences Corporation
    Inventor: Robert Stobie
  • Patent number: 8021161
    Abstract: A simulated heart valve root used for training physicians in techniques of implantation of prosthetic heart valves as well as for more realistically testing the efficacy of prosthetic heart valves. The simulated heart valve root is made of the flexible, tubular body having an inner wall defining an annular ledge within which the prosthetic heart valve is implanted. Discrete nodes or areas of simulated calcification may be provided on the annular ledge. A simulated aortic root includes alternating cusps and commissures with calcification simulated at least at one of the commissures. A tear in the annular ledge may also be provided which simulates a tear that might occur from a valvuloplasty procedure. A reinforcing sleeve may surround the flexible tubular body to provide rigidity or hoop strength thereto. A method of testing includes mounting the simulated heart valve root in a flow conduit, implanting a prosthetic heart valve in the root, applying pulsatile flow to the assembly, and monitoring for leaks.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: September 20, 2011
    Assignee: Edwards Lifesciences Corporation
    Inventors: Hugues LaFrance, Robert Stobie
  • Patent number: 7909866
    Abstract: Anatomical orifice sizers that are optimally proportional to an associated prosthetic device such as a heart valve, and methods of use are provided. The sizers are desirably slightly larger than the rigid mounting diameter of the corresponding heart valve. The heart valve sizer may be cylindrical and have a diameter about 0.3 mm larger than the valve mounting diameter. The sizer preferably has a length of between about 19 mm to 22 mm, and the edges are desirably rounded to a minimum 1 mm radius. The method includes providing a set of cylindrical sizers having varying diameters; sequentially inserting at least two of the sizers through the annulus; measuring the push force needed to pass each sizer through the annulus; selecting a valve corresponding to the sizer for which the measured push force is between about 150 and 300 grams.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: March 22, 2011
    Assignee: Edwards Lifesciences Corporation
    Inventor: Robert Stobie
  • Publication number: 20100312334
    Abstract: A holder for a flexible leaflet prosthetic aortic heart valve that is less bulky than earlier holders and minimizes obstructions to vision and working space around the valve to facilitate implantation thereof. The holder may have a central hub and three outwardly extending legs that connect directly and exclusively to tips of the commissures of the aortic heart valve for better tactile feedback when parachuting and seating the valve in the annulus. The legs are sized so that they do not overlap the commissure tips and therefore afford a better view of the sewing ring adjacent the commissures. The legs may be narrow in the midsection or split into two rails to increase visibility of the valve leaflets. The hub may be vaulted axially upward relative to the outer ends of the legs to further increase visibility of the valve.
    Type: Application
    Filed: August 13, 2010
    Publication date: December 9, 2010
    Applicant: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Robert Stobie
  • Patent number: 7819915
    Abstract: An improved holder, system and method for implanting a tissue-type prosthetic heart mitral valve that constricts the commissure posts of the valve and allows the user to detach the handle of the holder prior to withdrawing the holder itself. The ability to remove the handle allows a surgeon greater access to suturing the prosthetic valve to the mitral annulus. The holder may include two relatively movable plates, one of which attaches to the valve sewing on the inflow end of the valve ring and the other which attaches via sutures to the valve commissures on the outflow end. Separation of the plates places the sutures in tension and constricts the commissures. An adjusting member or adapter is interposed between the handle and holder to enable separation of the two plates and removal of the handle. The adjusting member or adapter may be packaged with the valve and holder combination, or may be sold as a separate unit, possibly with the handle, so that prior art holders can be retrofit.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: October 26, 2010
    Assignee: Edwards Lifesciences Corporation
    Inventors: Robert Stobie, Jerry L. Jackman, Cuong Ton-That, C. Roger Ekholm, Steve Newborg
  • Patent number: 7806926
    Abstract: A holder for a flexible leaflet prosthetic aortic heart valve that is less bulky than earlier holders and minimizes obstructions to vision and working space around the valve to facilitate implantation thereof. The holder may have a central hub and three outwardly extending legs that connect directly and exclusively to tips of the commissures of the aortic heart valve for better tactile feedback when parachuting and seating the valve in the annulus. The legs are sized so that they do not overlap the commissure tips and therefore afford a better view of the sewing ring adjacent the commissures. The legs may be narrow in the midsection or split into two rails to increase visibility of the valve leaflets. The hub may be vaulted axially upward relative to the outer ends of the legs to further increase visibility of the valve.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: October 5, 2010
    Assignee: Edwards Lifesciences Corporation
    Inventor: Robert Stobie
  • Patent number: 7658763
    Abstract: An improved holder and method for implanting a tissue-type prosthetic mitral heart valve that prevents suture looping and ma y also constrict the commissure posts of the valve. An upstanding or shaft member axially positioned on the holder causes the lengths of attachment sutures to extend axially beyond the commissure post tips to create a tent and prevent looping of any of an array of pre-implanted sutures around the tips during deployment of the valve. The shaft member may be axially movable such that it can be initially retracted and then actuated just prior to valve deployment. The shaft member may have notches on its distal tip for capturing the attachment sutures, which are crossed over along the valve axis to ensure engagement by the notches. The attachment sutures may be strands or filaments, or may be wider bands of flexible biocompatible material. If bands are used, they desirably cover the commissure post tips to further help prevent suture looping thereover.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: February 9, 2010
    Assignee: Edwards Lifesciences Corporation
    Inventor: Robert Stobie
  • Publication number: 20070269784
    Abstract: A simulated heart valve root used for training physicians in techniques of implantation of prosthetic heart valves as well as for more realistically testing the efficacy of prosthetic heart valves. The simulated heart valve root is made of the flexible, tubular body having an inner wall defining an annular ledge within which the prosthetic heart valve is implanted. Discrete nodes or areas of simulated calcification may be provided on the annular ledge. A simulated aortic root includes alternating cusps and commissures with calcification simulated at least at one of the commissures. A tear in the annular ledge may also be provided which simulates a tear that might occur from a valvuloplasty procedure. A reinforcing sleeve may surround the flexible tubular body to provide rigidity or hoop strength thereto. A method of testing includes mounting the simulated heart valve root in a flow conduit, implanting a prosthetic heart valve in the root, applying pulsatile flow to the assembly, and monitoring for leaks.
    Type: Application
    Filed: May 1, 2006
    Publication date: November 22, 2007
    Inventors: Hugues LaFrance, Robert Stobie
  • Publication number: 20070254273
    Abstract: A simulated heart valve root used for training physicians in techniques of implantation of prosthetic heart valves as well as for more realistically testing the efficacy of prosthetic heart valves. The simulated heart valve root is made of the flexible, tubular body having an inner wall defining an annular ledge within which the prosthetic heart valve is implanted. Discrete nodes or areas of simulated calcification may be provided on the annular ledge. A simulated aortic root includes alternating cusps and commissures with calcification simulated at least at one of the commissures. A tear in the annular ledge may also be provided which simulates a tear that might occur from a valvuloplasty procedure. A reinforcing sleeve may surround the flexible tubular body to provide rigidity or hoop strength thereto. A method of testing includes mounting the simulated heart valve root in a flow conduit, implanting a prosthetic heart valve in the root, applying pulsatile flow to the assembly, and monitoring for leaks.
    Type: Application
    Filed: May 1, 2006
    Publication date: November 1, 2007
    Inventors: Hugues LaFrance, Robert Stobie
  • Publication number: 20070244551
    Abstract: A holder for a flexible leaflet prosthetic aortic heart valve that is less bulky than earlier holders and minimizes obstructions to vision and working space around the valve to facilitate implantation thereof. The holder may have a central hub and three outwardly extending legs that connect directly and exclusively to tips of the commissures of the aortic heart valve for better tactile feedback when parachuting and seating the valve in the annulus. The legs are sized so that they do not overlap the commissure tips and therefore afford a better view of the sewing ring adjacent the commissures. The legs may be narrow in the midsection or split into two rails to increase visibility of the valve leaflets. The hub may be vaulted axially upward relative to the outer ends of the legs to further increase visibility of the valve.
    Type: Application
    Filed: April 14, 2006
    Publication date: October 18, 2007
    Inventor: Robert Stobie
  • Patent number: 6966925
    Abstract: An improved holder and method for implanting a tissue-type prosthetic mitral heart valve that prevents suture looping and may also constrict the commissure posts of the valve. An upstanding or shaft member axially positioned on the holder causes the lengths of attachment sutures to extend axially beyond the commissure post tips to create a tent and prevent looping of any of an array of pre-implanted sutures around the tips during deployment of the valve. The shaft member may be axially movable such that it can be initially retracted and then actuated just prior to valve deployment. The shaft member may have notches on its distal tip for capturing the attachment sutures, which are crossed over along the valve axis to ensure engagement by the notches. The attachment sutures may be strands or filaments, or may be wider bands of flexible biocompatible material. If bands are used, they desirably cover the commissure post tips to further help prevent suture looping thereover.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: November 22, 2005
    Assignee: Edwards Lifesciences Corporation
    Inventor: Robert Stobie
  • Patent number: 6964682
    Abstract: An improved holder, system and method for implanting a tissue-type prosthetic mitral heart valve that prevents suture looping and may also constrict the commissure posts of the valve. The holder may include two relatively movable plates, one of which attaches to the valve sewing on the inflow end of the valve ring and the other which attaches via sutures or similar expedient to the valve commissures on the outflow end. Separation of the plates places the sutures in tension and constricts the commissures. The sutures may be strands or filaments, or may be wider bands of flexible biocompatible material. If bands are used, they desirably cover the commissure post tips to further help prevent suture looping thereover. The flexible lengths of material extend directly between commissures of the valve, or may extending radially inward from each commissure to a central upstanding member.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: November 15, 2005
    Assignee: Edwards Lifesciences Corporation
    Inventors: Diana Nguyen-Thien-Nhon, Myron Howanec, Jr., Ralph Kafesjian, Delos M. Cosgrove, Robert Stobie, Hung Ly Lam
  • Publication number: 20050251252
    Abstract: An improved holder and method for implanting a tissue-type prosthetic mitral heart valve that prevents suture looping and may also constrict the commissure posts of the valve. An upstanding or shaft member axially positioned on the holder causes the lengths of attachment sutures to extend axially beyond the commissure post tips to create a tent and prevent looping of any of an array of pre-implanted sutures around the tips during deployment of the valve. The shaft member may be axially movable such that it can be initially retracted and then actuated just prior to valve deployment. The shaft member may have notches on its distal tip for capturing the attachment sutures, which are crossed over along the valve axis to ensure engagement by the notches. The attachment sutures may be strands or filaments, or may be wider bands of flexible biocompatible material. If bands are used, they desirably cover the commissure post tips to further help prevent suture looping thereover.
    Type: Application
    Filed: July 13, 2005
    Publication date: November 10, 2005
    Inventor: Robert Stobie
  • Publication number: 20050055086
    Abstract: Anatomical orifice sizers that are optimally proportional to an associated prosthetic device such as a heart valve, and methods of use are provided. The sizers are desirably slightly larger than the rigid mounting diameter of the corresponding heart valve. The heart valve sizer may be cylindrical and have a diameter about 0.3 mm larger than the valve mounting diameter. The sizer preferably has a length of between about 19 mm to 22 mm, and the edges are desirably rounded to a minimum 1 mm radius. The method includes providing a set of cylindrical sizers having varying diameters; sequentially inserting at least two of the sizers through the annulus; measuring the push force needed to pass each sizer through the annulus; selecting a valve corresponding to the sizer for which the measured push force is between about 150 and 300 grams.
    Type: Application
    Filed: October 19, 2004
    Publication date: March 10, 2005
    Inventor: Robert Stobie
  • Patent number: 6846324
    Abstract: Anatomical orifice sizers that are optimally proportional to an associated prosthetic device such as a heart valve, and methods of use are provided. The sizers are desirably slightly larger than the rigid mounting diameter of the corresponding heart valve. The heart valve sizer may be cylindrical and have a diameter about 0.3 mm larger than the valve mounting diameter. The sizer preferably has a length of between about 19 mm to 22 mm, and the edges are desirably rounded to a minimum 1 mm radius. The method includes providing a set of cylindrical sizers having varying diameters; sequentially inserting at least two of the sizers through the annulus; measuring the push force needed to pass each sizer through the annulus; selecting a valve corresponding to the sizer for which the measured push force is between about 150 and 300 grams.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: January 25, 2005
    Assignee: Edwards Lifesciences Corporation
    Inventor: Robert Stobie
  • Publication number: 20040148017
    Abstract: An improved holder and method for implanting a tissue-type prosthetic mitral heart valve that prevents suture looping and may also constrict the commissure posts of the valve. An upstanding or shaft member axially positioned on the holder causes the lengths of attachment sutures to extend axially beyond the commissure post tips to create a tent and prevent looping of any of an array of pre-implanted sutures around the tips during deployment of the valve. The shaft member may be axially movable such that it can be initially retracted and then actuated just prior to valve deployment. The shaft member may have notches on its distal tip for capturing the attachment sutures, which are crossed over along the valve axis to ensure engagement by the notches. The attachment sutures may be strands or filaments, or may be wider bands of flexible biocompatible material. If bands are used, they desirably cover the commissure post tips to further help prevent suture looping thereover.
    Type: Application
    Filed: November 10, 2003
    Publication date: July 29, 2004
    Inventor: Robert Stobie
  • Publication number: 20040138741
    Abstract: An improved holder, system and method for implanting a tissue-type prosthetic heart mitral valve that constricts the commissure posts of the valve and allows the user to detach the handle of the holder prior to withdrawing the holder itself. The ability to remove the handle allows a surgeon greater access to suturing the prosthetic valve to the mitral annulus. The holder may include two relatively movable plates, one of which attaches to the valve sewing on the inflow end of the valve ring and the other which attaches via sutures to the valve commissures on the outflow end. Separation of the plates places the sutures in tension and constricts the commissures. An adjusting member or adapter is interposed between the handle and holder to enable separation of the two plates and removal of the handle. The adjusting member or adapter may be packaged with the valve and holder combination, or may be sold as a separate unit, possibly with the handle, so that prior art holders can be retrofit.
    Type: Application
    Filed: December 19, 2003
    Publication date: July 15, 2004
    Inventors: Robert Stobie, Jerry L. Jackman, Cuong Ton-That, C. Roger Ekholm, Steve Newborg
  • Patent number: 6702852
    Abstract: An improved holder, system and method for implanting a tissue-type prosthetic heart mitral valve that constricts the commissure posts of the valve and allows the user to detach the handle of the holder prior to withdrawing the holder itself. The ability to remove the handle allows a surgeon greater access to suturing the prosthetic valve to the mitral annulus. The holder may include two relatively movable plates, one of which attaches to the valve sewing on the inflow end of the valve ring and the other which attaches via sutures to the valve commissures on the outflow end. Separation of the plates places the sutures in tension and constricts the commissures. An adjusting member or adapter is interposed between the handle and holder to enable separation of the two plates and removal of the handle. The adjusting member or adapter may be packaged with the valve and holder combination, or may be sold as a separate unit, possibly with the handle, so that prior art holders can be retrofit.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: March 9, 2004
    Assignee: Edwards Lifesciences Corporation
    Inventors: Robert Stobie, Jerry L. Jackman, Cuong Ton-That, C. Roger Ekholm, Steve Newborg
  • Patent number: RE46668
    Abstract: An improved holder and method for implanting a tissue-type prosthetic mitral heart valve that prevents suture looping and may also constrict the commissure posts of the valve. An upstanding or shaft member axially positioned on the holder causes the lengths of attachment sutures to extend axially beyond the commissure post tips to create a tent and prevent looping of any of an array of pre-implanted sutures around the tips during deployment of the valve. The shaft member may be axially movable such that it can be initially retracted and then actuated just prior to valve deployment. The shaft member may have notches on its distal tip for capturing the attachment sutures, which are crossed over along the valve axis to ensure engagement by the notches. The attachment sutures may be strands or filaments, or may be wider bands of flexible biocompatible material. If bands are used, they desirably cover the commissure post tips to further help prevent suture looping thereover.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: January 16, 2018
    Assignee: Edwards Lifesciences Corporation
    Inventors: Robert Stobie, Ralph Kafesjian, Diana Nguyen-Thien-Nhon, Robert Ian Lister, Andrzej Skoskiewicz, Adrian Benton James, Aaron Ernesto Sklar, Banny Banerjee
  • Patent number: RE47065
    Abstract: An improved holder and method for implanting a tissue-type prosthetic mitral heart valve that prevents suture looping and ma y also constrict the commissure posts of the valve. An upstanding or shaft member axially positioned on the holder causes the lengths of attachment sutures to extend axially beyond the commissure post tips to create a tent and prevent looping of any of an array of pre-implanted sutures around the tips during deployment of the valve. The shaft member may be axially movable such that it can be initially retracted and then actuated just prior to valve deployment. The shaft member may have notches on its distal tip for capturing the attachment sutures, which are crossed over along the valve axis to ensure engagement by the notches. The attachment sutures may be strands or filaments, or may be wider bands of flexible biocompatible material. If bands are used, they desirably cover the commissure post tips to further help prevent suture looping thereover.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: October 2, 2018
    Assignee: Edwards Lifesciences Corporation
    Inventors: Robert Stobie, Ralph Kafesjian, Diana Nguyen-Thien-Nhon, Robert Ian Lister, Andrzej Skoskiewicz, Adrian Benton James, Aaron Ernesto Sklar, Banny Banerjee