Patents by Inventor Robert V. Burch

Robert V. Burch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6972409
    Abstract: A mid-IR spectrometer attachment performs reflection spectroscopy measurements using commercially available infinity corrected light microscopes without degrading the microscope's performance. The mid-IR spectrometer attachment, which is mounted to and supported by the visible light microscope, introduces infrared radiation into the optical path of the microscope. Radiation from the mid-IR spectrometer source is directed by a trichroic radiation director to a mid-IR objective lens affixed to the microscope nosepiece. The objective lens focuses the radiation on to a subject sample surface in order to acquire either internally or externally reflected infrared spectra by subsequently directing the sample encoded reflected mid-infrared radiation to the radiation director and then to a mid-infrared radiation detection system.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: December 6, 2005
    Assignee: Smiths Detection Inc.
    Inventors: Donald W. Sting, Robert V. Burch, John A. Reffner, Donald K. Wilks
  • Publication number: 20040135084
    Abstract: A mid-infrared (mid-IR) spectrometer attachment performs reflection spectroscopy measurements using commercially available infinity corrected light microscopes. The mid-IR spectrometer attachment introduces infrared radiation into the optical path of a visible light microscope. Radiation from the mid-IR spectrometer source is directed by a radiation director to a mid-IR objective lens affixed to the microscope nosepiece. The objective lens focuses the radiation on to a subject sample surface in order to acquire either internally or externally reflected infrared spectra by subsequently directing the sample encoded reflected infrared radiation to an infrared radiation detection system. The mid-IR spectrometer attachment is mechanically and optically compatible with a plurality of commercial infinity-corrected visible light microscopes.
    Type: Application
    Filed: December 22, 2003
    Publication date: July 15, 2004
    Inventors: Donald W. Sting, Robert V. Burch, John A. Reffner, Donald K. Wilks
  • Patent number: 6693280
    Abstract: A mid-IR spectrometer attachment performs reflection spectroscopy measurements using commercially available infinity corrected light microscopes without degrading the microscope's performance. The mid-IR spectrometer attachment, which is mounted to and supported by the visible light microscope, introduces infrared radiation into the optical path of the microscope. Radiation from the mid-IR spectrometer source is directed by a trichroic radiation director to a mid-IR objective lens affixed to the microscope nosepiece. The objective lens focuses the radiation on to a subject sample surface in order to acquire either internally or externally reflected infrared spectra by subsequently directing the sample encoded reflected mid-infrared radiation to the radiation director and then to a mid-infrared radiation detection system.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: February 17, 2004
    Assignee: Sensir Technologies, L.L.C.
    Inventors: Donald W. Sting, Robert V. Burch, John A. Reffner, Donald K. Wilks
  • Publication number: 20030025080
    Abstract: A mid-infrared (mid-IR) spectrometer attachment performs reflection spectroscopy measurements using commercially available infinity corrected light microscopes. The mid-IR spectrometer attachment introduces infrared radiation into the optical path of a visible light microscope. Radiation from the mid-IR spectrometer source is directed by a radiation director to a mid-IR objective lens affixed to the microscope nosepiece. The objective lens focuses the radiation on to a subject sample surface in order to acquire either internally or externally reflected infrared spectra by subsequently directing the sample encoded reflected infrared radiation to an infrared radiation detection system. The mid-IR spectrometer attachment is mechanically and optically compatible with a plurality of commercial infinity-corrected visible light microscopes.
    Type: Application
    Filed: August 3, 2001
    Publication date: February 6, 2003
    Inventors: Donald W. Sting, Robert V. Burch, John A. Reffner, Donald K. Wilks
  • Patent number: 5247343
    Abstract: A spectrometer for Raman spectrometry has a radiation source which provides a beam of radiation directed onto a sample, sample collection optics which directs the radiation from the sample as an input beam into an interferometer, the output beam of the interferometer being focused onto a detector, and filters interposed in the input and output beams of the interferometer. The filters are preferably holographic notch filters. Optical subtraction occurring in the interferometer as a result of the filters provides enhanced attenuation of the Rayleigh line of the reflected radiation while substantially passing the Raman lines, with the two filters achieving attenuation of the Rayleigh line equivalent to that obtained by several comparable filters stacked together.
    Type: Grant
    Filed: November 1, 1991
    Date of Patent: September 21, 1993
    Assignee: Nicolet Instrument Corporation
    Inventor: Robert V. Burch
  • Patent number: 5239361
    Abstract: An interferometer mirror such as may be used in an FTIR spectrometer is mounted to a mirror alignment device which allows alignment of the mirror during operation of the interferometer. The alignment device includes a base, a mirror support to which the mirror is mounted, and means for mounting the mirror support to the base to allow resilient pivoting of the mirror about an initial position around two orthogonal axes when force is applied to the mirror support. Two drive coils of square configuration are mounted around the periphery of the mirror support. Each drive coil has lower coil sections along two opposite quadrants and higher coil sections, with the two drive coils being mounted to the mirror supports so that the lower sections of each are in adjacent quadrants. A magnetic field, such as that provided by permanent magnets, is applied to the lower sections of each coil while the upper sections of each coil are outside the magnetic field.
    Type: Grant
    Filed: October 25, 1991
    Date of Patent: August 24, 1993
    Assignee: Nicolet Instrument Corporation
    Inventor: Robert V. Burch
  • Patent number: 5107366
    Abstract: An electromagnetic coil is wound on a circular mold and potted with a potting compound in order to eliminate the bobbin which is used with prior art electromagnetic coils. The potting technique can be advantageously applied to coils wound on any shape mold and to coils wound with wire of any cross-sectional shape. In the preferred embodiment the "bobbinless" coil is wound on a cylindrical mold and uses wire which has been partially flattened to improve the density of the coil. The flattened wire is preferably made by flattening ordinary wire copper to an aspect ratio of about 1.5. In an alternate embodiment, the bobbinless coil is wound with ordinary circular wire. In the preferred embodiment, the bobbinless coil forms part of a linear motor for use in driving the movable mirror in an interferometer spectrometer. In this application the coil provides a strong flux density and a strong force, yet occupies a relatively small volume.
    Type: Grant
    Filed: September 28, 1989
    Date of Patent: April 21, 1992
    Assignee: Nicolet Instrument Corporation
    Inventors: Yuchi Huang, Robert V. Burch
  • Patent number: 4799001
    Abstract: A start of scan circuit for an FTIR spectrometer includes a mode counter, counting through various states of operation of the moving mirror in the FTIR interferometer, and a positioning counter circuit which counts laser pulses from a positioning laser also directed through the interferometer. By appropriately loading and counting up or down the counter in various states, as determined by the mode counter, the circuit can flexibly control the start of scan of the FTIR so that that start of scan can be selectively varied by switches and/or under software control.
    Type: Grant
    Filed: July 23, 1987
    Date of Patent: January 17, 1989
    Assignee: Nicolet Corporation
    Inventor: Robert V. Burch