Patents by Inventor Roderick R. Kunz

Roderick R. Kunz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11237143
    Abstract: Reagents and methods are disclosed for detection of oxidizers and inorganic salts and other analytes of interest. The reagents can interact with their target analytes, especially oxidizer compositions or oxidizer-based explosives, to selectively enhance their ionization yield, interacting by chemical reaction or by forming an associative adduct which facilitates their detection. For example, the reagents can adduct with the counter-ion of the intended analyte for improved direct detection and/or react chemically via acid-base reactions to produce a new product for detection. In another aspect of the invention, reactive reagents and methods are also disclosed that facilitate indirect detection of the analyte at lower temperatures based on reduction-oxidation (redox) chemistry. These reagents are particularly useful in detecting oxidizer analytes.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: February 1, 2022
    Assignee: Massachusetts Institute Of Technology
    Inventors: Kerin E. Gregory, Roderick R. Kunz, Michael Sworin
  • Patent number: 9891193
    Abstract: The invention is directed to a swipe with at least one ionization reagent associated with the swipe for detecting target analytes and methods of detecting the target analyte molecules that can indicate the presence of, for example, explosives, narcotics, chemical warfare agents, biological warfare agents, or toxins. The swipe can be used to transfer molecules from a surface to the swipe for further analysis. In particular, the swipes can include an ionization reagent that is preferably a low volatility compound and capable of forming ionization reagent-analyte complexes with target analytes. The swipe can also include multiple ionization reagents with different volatilities such that they are released sequentially during a thermal ramp-up. Alternatively, the swipe can have multiple ionization reagents associated with spatially separated portions of the swipe such that they can be releasable sequentially to detect multiple target analytes.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 13, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Kerin E. Gregory, Roderick R. Kunz
  • Publication number: 20170299566
    Abstract: Reagents and methods are disclosed for detection of oxidizers and inorganic salts and other analytes of interest. The reagents can interact with their target analytes, especially oxidizer compositions or oxidizer-based explosives, to selectively enhance their ionization yield, interacting by chemical reaction or by forming an associative adduct which facilitates their detection. For example, the reagents can adduct with the counter-ion of the intended analyte for improved direct detection and/or react chemically via acid-base reactions to produce a new product for detection. In another aspect of the invention, reactive reagents and methods are also disclosed that facilitate indirect detection of the analyte at lower temperatures based on reduction-oxidation (redox) chemistry. These reagents are particularly useful in detecting oxidizer analytes.
    Type: Application
    Filed: February 17, 2017
    Publication date: October 19, 2017
    Inventors: Kerin E. Gregory, Roderick R. Kunz, Michael Sworin
  • Patent number: 9588095
    Abstract: Reagents and methods are disclosed for detection of oxidizers and inorganic salts and other analytes of interest. The reagents can interact with their target analytes, especially oxidizer compositions or oxidizer-based explosives, to selectively enhance their ionization yield, interacting by chemical reaction or by forming an associative adduct which facilitates their detection. For example, the reagents can adduct with the counter-ion of the intended analyte for improved direct detection and/or react chemically via acid-base reactions to produce a new product for detection. In another aspect of the invention, reactive reagents and methods are also disclosed that facilitate indirect detection of the analyte at lower temperatures based on reduction-oxidation (redox) chemistry. These reagents are particularly useful in detecting oxidizer analytes.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: March 7, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Kerin E. Gregory, Roderick R. Kunz, Michael Sworin
  • Publication number: 20150004710
    Abstract: Reagents and methods are disclosed for detection of oxidizers and inorganic salts and other analytes of interest. The reagents can interact with their target analytes, especially oxidizer compositions or oxidizer-based explosives, to selectively enhance their ionization yield, interacting by chemical reaction or by forming an associative adduct which facilitates their detection. For example, the reagents can adduct with the counter-ion of the intended analyte for improved direct detection and/or react chemically via acid-base reactions to produce a new product for detection. In another aspect of the invention, reactive reagents and methods are also disclosed that facilitate indirect detection of the analyte at lower temperatures based on reduction-oxidation (redox) chemistry. These reagents are particularly useful in detecting oxidizer analytes.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 1, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Kerin E. Gregory, Roderick R. Kunz, Michael Sworin
  • Patent number: 8198095
    Abstract: Methods and devices for detecting the presence of a NO forming material (e.g., a material that can form, or is, a nitrogen monoxide molecule) are disclosed based on detection of fluorescence exhibited by NO molecules in a first vibrationally excited state of a ground electronic state. Such excited NO molecules can be formed, for example, when small amounts of explosives are photodissociated. By inducing fluorescence of the material, a distinct signature of the explosive can be detected. Such techniques can be performed quickly and with a significant standoff distance, which can add to the invention's utility. In another aspection of the invention, methods and apparatus for generating electromagnetic radiation are disclosed. Such methods and apparatus can be used in conjunction with any detection method disclosed herein.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: June 12, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: John J. Zayhowski, Mordechai Rothschild, Charles M. Wynn, Roderick R. Kunz
  • Publication number: 20110233428
    Abstract: Methods and devices for detecting the presence of a NO forming material (e.g., a material that can form, or is, a nitrogen monoxide molecule) are disclosed based on detection of fluorescence exhibited by NO molecules in a first vibrationally excited state of a ground electronic state. Such excited NO molecules can be formed, for example, when small amounts of explosives are photodissociated. By inducing fluorescence of the material, a distinct signature of the explosive can be detected. Such techniques can be performed quickly and with a significant standoff distance, which can add to the invention's utility. In another aspection of the invention, methods and apparatus for generating electromagnetic radiation are disclosed. Such methods and apparatus can be used in conjunction with any detection method disclosed herein.
    Type: Application
    Filed: June 3, 2011
    Publication date: September 29, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Mordechai Rothschild, Charles M. Wynn, John J. Zayhowski, Roderick R. Kunz
  • Patent number: 7955855
    Abstract: Methods and devices for detecting the presence of a NO forming material (e.g., a material that can form, or is, a nitrogen monoxide molecule) are disclosed based on detection of fluorescence exhibited by NO molecules in a first vibrationally excited state of a ground electronic state. Such excited NO molecules can be formed, for example, when small amounts of explosives are photodissociated. By inducing fluorescence of the material, a distinct signature of the explosive can be detected. Such techniques can be performed quickly and with a significant standoff distance, which can add to the invention's utility. In another aspection of the invention, methods and apparatus for generating electromagnetic radiation are disclosed. Such methods and apparatus can be used in conjunction with any detection method disclosed herein.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: June 7, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Mordechai Rothschild, Charles M. Wynn, John J. Zayhowski, Roderick R. Kunz
  • Publication number: 20100089443
    Abstract: Methods, devices, and compositions related to organic solar cells, sensors, and other photon processing devices are disclosed. In some aspects, an organic semiconducting composition is formed with nano-sized features, e.g., a layer conforming to a shape exhibiting nano-sized tapered features. Such structures can be formulated as an organic n-type and/or an organic p-type layer incorporated in a device that exhibits enhanced conductor mobility relative to conventional structures such as planar layered formed organic semiconductors. The nanofeatures can be formed on an exciton blocking layer (“EBL”) surface, with an organic semiconducting layer deposited thereon to conform with the EBL's surface features. A variety of material possibilities are disclosed, as well as a number of different configurations. Such organic structures can be used to form flexible solar cells in a roll-out format.
    Type: Application
    Filed: September 24, 2009
    Publication date: April 15, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: Theodore M. Bloomstein, Roderick R. Kunz, Theodore M. Lyszczarz, Vladimir Bulovic
  • Patent number: 7687276
    Abstract: A method for collecting and concentrating trace chemicals for subsequent analysis by virtually any type of chemical detector includes providing directed radiation to a sample, or a portion of a sample. An apparatus can include a sampling body for providing radiation.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: March 30, 2010
    Assignee: Massachusetts Institute of Technology
    Inventor: Roderick R. Kunz
  • Publication number: 20100047916
    Abstract: Methods and devices for detecting the presence of a NO forming material (e.g., a material that can form, or is, a nitrogen monoxide molecule) are disclosed based on detection of fluorescence exhibited by NO molecules in a first vibrationally excited state of a ground electronic state. Such excited NO molecules can be formed, for example, when small amounts of explosives are photodissociated. By inducing fluorescence of the material, a distinct signature of the explosive can be detected. Such techniques can be performed quickly and with a significant standoff distance, which can add to the invention's utility. In another aspection of the invention, methods and apparatus for generating electromagnetic radiation are disclosed. Such methods and apparatus can be used in conjunction with any detection method disclosed herein.
    Type: Application
    Filed: July 10, 2009
    Publication date: February 25, 2010
    Applicant: Massachusetts Institute Of Technology
    Inventors: Mordechai Rothschild, Charles M. Wynn, John J. Zayhowski, Roderick R. Kunz
  • Patent number: 6833234
    Abstract: Methods for the preparation of multilayered resists are described. To efficiently pattern large contiguous areas rapidly, a procedure has been developed using spot-size modulation of the focused laser beam to more efficiently pattern interior portions. Critical portions at the perimeter are patterned at high resolutions. The spot-size is progressively increased towards the interior allowing a controlled transition to coarser spot-sizes without impacting the exposure dose in critical portions. Patterning times are significantly reduced since in effect shells are patterned. An algorithm is defined to subdivide a layer into different zones, determine the appropriate focused spot-sizes used for each zone, and define the laser scan trace within a zone to enable efficient patterning of broad areas in positive tone resists.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: December 21, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Theodore M. Bloomstein, Roderick R. Kunz, Stephen T. Palmacci
  • Patent number: 6794109
    Abstract: The present invention provides photoresist materials for use in photolithography at wavelengths less than about 248 nm. More particularly, the photoresists of the invention are particularly suited for use in 157 nm lithography. A photoresist composition of the invention includes a polymer having at least one monomeric unit having an aromatic moiety. The monomeric unit further includes at least a group, such as an electron withdrawing group, attached to the aromatic moiety. The attached group includes at least one CF bond. The polymer further includes an acidic hydroxyl group. A photoresist composition of the invention can have an absorbance in a range of 1-5 &mgr;m−1 at 157 nm, rendering it particularly suitable for use as a single layer resist in 157 nm lithography.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: September 21, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Theodore H. Fedynyshyn, Roderick R. Kunz, Michael Sworin, Roger Sinta
  • Patent number: 6777170
    Abstract: Methods for the preparation of multilayered resists are described. A first layer of photoresist is deposited onto a substrate. First portions of the first layer are exposed to a first dose of radiant energy. A second layer of photoresist is deposited at atop the first layer and second portions of the second layer are exposed to a second varied dose of radiant energy. The dose is modulated over different portions of a layer to preferentially enhance development within the interior of the structure to reduce total development times.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: August 17, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Theodore M. Bloomstein, Roderick R. Kunz, Stephen T. Palmacci
  • Patent number: 6730256
    Abstract: Methods for the preparation of multilayered resists include exposure of the a first layer to radiation followed by exposure to an oxidizing agent. The oxidizing agent alters the surface characteristics of the first resist layer such that it is rendered more hydrophilic than the original resist layer. A second layer of resist is then applied to the oxidized surface of the first resist layer and exposed to radiation. This process can be repeated for thousands of coating layers, thereby permitting stereolithographic patterning of parts and construction of micromachines. A final treatment with a dissolution solution will dissolve unwanted resist material. Dependent upon the type of resist material used in the multilayered resist, the dissolution solution can remove the radiation exposed areas, e.g., a positive resist, or remove unexposed areas, e.g., a negative resist.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: May 4, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Theodore M. Bloomstein, Roderick R. Kunz, Stephen T. Palmacci
  • Patent number: 6413781
    Abstract: The method and apparatus of the invention create a dynamic Soret effect for propelling a target chemical constituent along a pathway. A moving temperature profile impressed upon the pathway produces consecutive alternating warmer and cooler zones along the path which transport components of a mixture down the path according to their respective diffusivities. In one embodiment, the invention provides a dynamic thermophoretic concentrator for separating a target chemical constituent from a mixture of components on the basis of diffusion coefficient by using alternate forward and backward motion of a temperature profile along the pathway, thereby accumulating an ultimate concentration of the target constituent greater than its initial concentration in the mixture.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: July 2, 2002
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Geis, Roderick R. Kunz, Margaret B. Stern
  • Patent number: 6239428
    Abstract: Ion mobility spectrometer systems and methods of using such systems are disclosed. The systems and methods can combine two different ionization techniques (e.g., proton affinity ionization and electron transfer ionization) to provide enhanced detection sensitivity and/or detection selectivity of certain target compounds.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: May 29, 2001
    Assignee: Massachusetts Institute of Technology
    Inventor: Roderick R. Kunz
  • Patent number: 5891959
    Abstract: Anti-reflective coatings and methods for forming these anti-reflective coatings are disclosed that have a polymer chemistry and optical characteristics suitable for suppressing the light that reflects off a circuit substrate during a photo-lithographic process. These anti-reflective coatings include a phenolic polymer material and an epoxide-containing polymer material that can be combined in a select proportion to form a thermally curable polymeric anti-reflective coating. The select proportions of the combined materials tailors the optical characteristic of the anti-reflective coating to attenuate energy about a select range of wavelengths.
    Type: Grant
    Filed: January 27, 1997
    Date of Patent: April 6, 1999
    Assignee: Massachusetts Institute of Technology
    Inventor: Roderick R. Kunz
  • Patent number: 5597868
    Abstract: Anti-reflective coatings and methods for forming these anti-reflective coatings are disclosed that have a polymer chemistry and optical characteristics suitable for suppressing the light that reflects off a circuit substrate during a photolithographic process. These anti-reflective coatings include a phenolic polymer material and an epoxide-containing polymer material that can be combined in a select proportion to form a thermally curable polymeric anti-reflective coating. The select proportions of the combined materials tailors the optical characteristic of the anti-reflective coating to attenuate energy about a select range of wavelengths.
    Type: Grant
    Filed: March 4, 1994
    Date of Patent: January 28, 1997
    Assignee: Massachusetts Institute of Technology
    Inventor: Roderick R. Kunz