Patents by Inventor Rodney A. Mattson

Rodney A. Mattson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10591616
    Abstract: A one-dimensional multi-element photo detector includes a photodiode array with a first upper row of photodiode pixels and a second lower row of photodiode pixels. The photodiode array is part of the photo detector. A scintillator array includes a first upper row and a second lower row of scintillator pixels. The first upper and second lower rows of scintillator pixels are respectively optically coupled to the first upper and second lower rows of photodiode pixels. The photo detector also includes readout electronics, which are also part of the photo detector. Electrical traces interconnect the photodiode pixels and the readout electronics.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: March 17, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rodney A. Mattson, Randall P. Luhta, Marc A. Chappo
  • Publication number: 20150177390
    Abstract: A one-dimensional multi-element photo detector includes a photodiode array with a first upper row of photodiode pixels and a second lower row of photodiode pixels. The photodiode array is part of the photo detector. A scintillator array includes a first upper row and a second lower row of scintillator pixels. The first upper and second lower rows of scintillator pixels are respectively optically coupled to the first upper and second lower rows of photodiode pixels. The photo detector also includes readout electronics, which are also part of the photo detector. Electrical traces interconnect the photodiode pixels and the readout electronics.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 25, 2015
    Inventors: Rodney A. MATTSON, Randall P. LUHTA, Marc A. CHAPPO
  • Patent number: 9000382
    Abstract: A one-dimensional multi-element photo detector (120) includes a photodiode array (122) with a first upper row of photodiode pixels and a second lower row of photodiode pixels. The photodiode array (122) is part of the photo detector (120). A scintillator array (126) includes a first upper row and a second lower row of scintillator pixels. The first upper and second lower rows of scintillator pixels are respectively optically coupled to the first upper and second lower rows of photodiode pixels. The photo detector (120) also includes readout electronics (124), which are also part of the photo detector (120). Electrical traces (512) interconnect the photodiode pixels and the readout electronics (124).
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: April 7, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Rodney A. Mattson, Randall P. Luhta, Marc A. Chappo
  • Patent number: 8766199
    Abstract: A detector tile (116) of an imaging system (100) includes a photosensor array (204) and electronics (208) electrically coupled to the photosensor array (204), wherein the electronics includes a dose determiner (402) that determines a deposited dose for the detector tile (116) and generates a signal indicative thereof. In one non-limiting instance, this signal is utilized to correct parameters such as gain and thermal coefficients, which may vary with radiation dose.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: July 1, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Marc A. Chappo, Randall P. Luhta, Rodney A. Mattson
  • Patent number: 8710448
    Abstract: A radiation detector module (22) particularly well suited for use in computed tomography (CT) applications includes a scintillator (200), a photodetector array (202), and signal processing electronics (205). The photodetector array (202) includes a semiconductor substrate (208) having a plurality of photodetectors and metalization (210) fabricated on non-illuminated side of the substrate (208). The metalization routes electrical signals between the photodetectors and the signal processing electronics (205) and between the signal processing electronics (205) and an electrical connector (209).
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: April 29, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Randall P. Luhta, Marc A. Chappo, Brian E. Harwood, Rodney A. Mattson, Chris J. Vrettos
  • Patent number: 8532251
    Abstract: An imaging system (100) includes a radiation source (108) that emits radiation that traverses an examination region (106) and a detection system (114) that detects radiation that traverses the examination region (106) and generates a signal indicative thereof. The detection system (114) includes a first detector array (1141-114N) and a second detector array (1141-114N). The first and second detector arrays (1141-114N) are separately distinct detector arrays and at least one of the detector arrays (1141-114N) is moveable with respect to the radiation beam. A reconstructor (116) reconstructs the signal and generates volumetric image data indicative thereof.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: September 10, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Randall P. Luhta, Marc A. Chappo, Brian E. Harwood, Rodney A. Mattson, Chris John Vrettos
  • Patent number: 8525119
    Abstract: A radiation sensitive detector array includes a plurality of detector modules (118) extending along a z-axis direction and aligned along an x-axis direction with respect to the imaging system (100). At least one of the detector modules (118) includes a module backbone (124) and at least one detector tile (122). The at least one detector tile (122) is coupled to the module backbone (124) through a non-threaded fastener (142). The at least one detector tile (122) includes a two-dimensional detector (126) and a two-dimensional anti-scatter grid (128) that is focused at a focal spot (112) of an imaging system (100).
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: September 3, 2013
    Assignee: Koninklijke Philips N. V.
    Inventors: Randall P. Luhta, Rodney A. Mattson, Brian E. Harwood
  • Publication number: 20120313000
    Abstract: A detector tile (116) of an imaging system (100) includes a photosensor array (204) and electronics (208) electrically coupled to the photosensor array (204), wherein the electronics includes a dose determiner (402) that determines a deposited dose for the detector tile (116) and generates a signal indicative thereof. In one non-limiting instance, this signal is utilized to correct parameters such as gain and thermal coefficients, which may vary with radiation dose.
    Type: Application
    Filed: November 18, 2010
    Publication date: December 13, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Marc A. Chappo, Randall P. Luhta, Rodney A. Mattson
  • Publication number: 20120057670
    Abstract: An imaging system (100) includes a radiation source (108) that emits radiation that traverses an examination region (106) and a detection system (114) that detects radiation that traverses the examination region (106) and generates a signal indicative thereof. The detection system (114) includes a first detector array (1141-114N) and a second detector array (1141-114N). The first and second detector arrays (1141-114N) are separately distinct detector arrays and at least one of the detector arrays (1141-114N) is moveable with respect to the radiation beam. A reconstructor (116) reconstructs the signal and generates volumetric image data indicative thereof.
    Type: Application
    Filed: April 15, 2010
    Publication date: March 8, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Randall P. Luhta, Marc A. Chappo, Brian E. Harwood, Rodney A. Mattson, Chris John Vrettos
  • Publication number: 20120049074
    Abstract: A radiation sensitive detector array includes a plurality of detector modules (118) extending along a z-axis direction and aligned along an x-axis direction with respect to the imaging system (100). At least one of the detector modules (118) includes a module backbone (124) and at least one detector tile (122). The at least one detector tile (122) is coupled to the module backbone (124) through a non-threaded fastener (142). The at least one detector tile (122) includes a two-dimensional detector (126) and a two-dimensional anti-scatter grid (128) that is focused at a focal spot (112) of an imaging system (100).
    Type: Application
    Filed: April 14, 2010
    Publication date: March 1, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Randall P. Luhta, Rodney A. Mattson, Brian E. Harwood
  • Publication number: 20110210256
    Abstract: A one-dimensional multi-element photo detector (120) includes a photodiode array (122) with a first upper row of photodiode pixels and a second lower row of photodiode pixels. The photodiode array (122) is part of the photo detector (120). A scintillator array (126) includes a first upper row and a second lower row of scintillator pixels. The first upper and second lower rows of scintillator pixels are respectively optically coupled to the first upper and second lower rows of photodiode pixels. The photo detector (120) also includes readout electronics (124), which are also part of the photo detector (120). Electrical traces (512) interconnect the photodiode pixels and the readout electronics (124).
    Type: Application
    Filed: October 29, 2009
    Publication date: September 1, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Rodney A. Mattson, Randall P. Luhta, Marc A. Chappo
  • Patent number: 7873144
    Abstract: A radiographic imaging apparatus (10) comprises a primary radiation source (14) which projects a beam of radiation into an examination region (16). A detector (18) converts detected radiation passing through the examination region (16) into electrical detector signals representative of the detected radiation. The detector (18) has at least one temporally changing characteristic such as an offset B(t) or gain A(t). A grid pulse means (64) turns the primary radiation source (14) ON and OFF at a rate between 1000 and 5000 pulses per second, such that at least the offset B(t) is re-measured between 1000 and 5000 times per second and corrected a plurality of times during generation of the detector signals. The gain A(t) is measured by pulsing a second pulsed source (86, 100, 138) of a constant intensity (XRef) with a second pulse means (88). The gain A(t) is re-measured and corrected a plurality of times per second during generation of the detector signals.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: January 18, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Randall P. Luhta, Marc A. Chappo, Brian E. Harwood, Rodney A. Mattson, Chris J. Vrettos
  • Patent number: 7822173
    Abstract: An ionizing radiation detector module (22) includes a detector array (200), a memory (202), signal processing electronics (208), a communications interface (210), and a connector (212). The memory contains detector performance parameters (204) and detector correction algorithms (206). The signal processing electronics (208) uses the detector performance parameters (204) to correct signals from the detector array (200) in accordance with the detector correction algorithms (206).
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: October 26, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Rodney A. Mattson, Marc A. Chappo, Randall P. Luhta
  • Publication number: 20090238330
    Abstract: A radiographic imaging apparatus (10) comprises a primary radiation source (14) which projects a beam of radiation into an examination region (16). A detector (18) converts detected radiation passing through the examination region (16) into electrical detector signals representative of the detected radiation. The detector (18) has at least one temporally changing characteristic such as an offset B(t) or gain A(t). A grid pulse means (64) turns the primary radiation source (14) ON and OFF at a rate between 1000 and 5000 pulses per second, such that at least the offset B(t) is re-measured between 1000 and 5000 times per second and corrected a plurality of times during generation of the detector signals. The gain A(t) is measured by pulsing a second pulsed source (86, 100, 138) of a constant intensity (XRef) with a second pulse means (88). The gain A(t) is re-measured and corrected a plurality of times per second during generation of the detector signals.
    Type: Application
    Filed: December 5, 2005
    Publication date: September 24, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Randall P. Luhta, Marc A. Chappo, Brian E. Harwood, Rodney A. Mattson, Chris J. Vrettos
  • Patent number: 7573035
    Abstract: A radiation detector (24) for an imaging system includes a two-dimensional array (50) of nondeliquescent ceramic scintillating fibers or sheets (52). The scintillating fibers (52) are manufactured from a GOS ceramic material. Each scintillating fiber (52) has a width (d2) between 0.1 mm and 1 mm, a length (h2) between 0.1 mm and 2 mm and a height (h8) between 1 mm and 2 mm. Such scintillating fiber (52) has a height (h8) to cross-sectional dimension (d2, h2) ratio of approximately 10 to 1. The scintillating fibers (52) are held together by layers (86, 96) of a low index coating material. A two-dimensional array (32) of photodiodes (34) is positioned adjacent and in optical communication with the scintillating fibers (52) to convert the visible light into electrical signals. A grid (28) is disposed by the scintillating array (50). The grid (28) has the apertures (30) which correspond to a cross-section of the photodiodes (34) and determine a spatial resolution of the imaging system.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: August 11, 2009
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Simha Levene, Rodney A. Mattson, Ami Altman
  • Patent number: 7564940
    Abstract: A radiation detector for a computed tomography scanner includes a plurality of radiation detector modules. Each detector module includes an anti-scatter module, at least one radiation absorbing mask and a detector subassembly module. The anti-scatter module includes radiation absorbing anti-scatter plates. The detector subassembly module includes a substrate and an array of detector elements. The radiation absorbing mask is a photoetched grid, formed of a radiation absorbing material and is positioned between the anti-scatter module and the detector elements of array. The strip of the grid, that is parallel to the anti-scatter plates, is wider than each anti-scatter plate. The detector module is aligned with a spatial focus by inserting the alignment pins into the alignment openings of the radiation absorbing mask and the alignment openings of the detector subassembly module.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: July 21, 2009
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Rodney A. Mattson, William C. Brunnett
  • Publication number: 20090121146
    Abstract: A radiation detector module (22) particularly well suited for use in computed tomography (CT) applications includes a scintillator (200), a photodetector array (202), and signal processing electronics (205). The photodetector array (202) includes a semiconductor substrate (208) having a plurality of photodetectors and metalization (210) fabricated on non-illuminated side of the substrate (208). The metalization routes electrical signals between the photodetectors and the signal processing electronics (205) and between the signal processing electronics (205) and an electrical connector (209).
    Type: Application
    Filed: March 8, 2007
    Publication date: May 14, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N. V.
    Inventors: Randall P. Luhta, Marc A. Chappo, Brian E. Harwood, Rodney A. Mattson, Chris John Vrettos
  • Publication number: 20080298541
    Abstract: An ionizing radiation detector module (22) includes a detector array (200), a memory (202), signal processing electronics (208), a communications interface (210), and a connector (212). The memory contains detector performance parameters (204) and detector correction algorithms (206). The signal processing electronics (208) uses the detector performance parameters (204) to correct signals from the detector array (200) in accordance with the detector correction algorithms (206).
    Type: Application
    Filed: January 4, 2007
    Publication date: December 4, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N. V.
    Inventors: Rodney A. Mattson, Marc A. Chappo, Randall P. Luhta
  • Patent number: 7379528
    Abstract: A radiation detector module includes a scintillator (62, 62?, 162, 262) arranged to receive penetrating radiation of a computed tomography apparatus (10). The scintillator produces optical radiation responsive to the penetrating radiation. A detector array (66, 66?, 166, 266) is arranged to convert the optical radiation into electric signals. Electronics (72, 72?, 172, 272) are arranged on a side of the detector array opposite from the scintillator in a path of the penetrating radiation. A radiation shield (86, 86?, 100, 100?, 100?, 186, 210, 210?, 286, 286?) is disposed between the detector array and the electronics to absorb the penetrating radiation that passes through the scintillator. The radiation shield includes openings (90, 90?) that communicate between the detector array and the electronics. Electrical feedthroughs (88, 88?, 102, 102?, 102?, 188, 212, 212?, 288, 288?) pass through the radiation shield openings and electrically connect the detector array and the electronics.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: May 27, 2008
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Rodney A. Mattson, Randall P. Luhta, Marc A. Chappo
  • Publication number: 20080063138
    Abstract: A radiation detector (24) for an imaging system includes a two-dimensional array (50) of nondeliquescent ceramic scintillating fibers or sheets (52). The scintillating fibers (52) are manufactured from a GOS ceramic material. Each scintillating fiber (52) has a width (d2) between 0.1 mm and 1 mm, a length (h2) between 0.1 mm and 2 mm and a height (h8) between 1 mm and 2 mm. Such scintillating fiber (52) has a height (h8) to cross-sectional dimension (d2, h2) ratio of approximately 10 to 1. The scintillating fibers (52) are held together by layers (86, 96) of a low index coating material. A two-dimensional array (32) of photodiodes (34) is positioned adjacent and in optical communication with the scintillating fibers (52) to convert the visible light into electrical signals. A grid (28) is disposed by the scintillating array (50). The grid (28) has the apertures (30) which correspond to a cross-section of the photodiodes (34) and determine a spatial resolution of the imaging system.
    Type: Application
    Filed: October 12, 2005
    Publication date: March 13, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Simha Levene, Rodney Mattson, Ami Altman