Patents by Inventor Roger R. Schmidt

Roger R. Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11648133
    Abstract: Embodiments include a cooling device for a medical device. The cooling device including a controller configured to receive data from one or more temperature sensors and a pump, configured to be operated by the controller, to circulate a cooling fluid through a cooling system and through fluid channels in the medical device. The cooling device is configured to be worn by a user and to be selectively coupled to the medical device by the user.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: May 16, 2023
    Assignee: International Business Machines Corporation
    Inventors: Budy Notohardjono, Milnes P. David, Roger R. Schmidt, Xiangfei Yu, Robert K. Mullady
  • Publication number: 20210401593
    Abstract: Embodiments include a cooling device for a medical device. The cooling device including a controller configured to receive data from one or more temperature sensors and a pump, configured to be operated by the controller, to circulate a cooling fluid through a cooling system and through fluid channels in the medical device. The cooling device is configured to be worn by a user and to be selectively coupled to the medical device by the user.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Inventors: BUDY NOTOHARDJONO, MILNES P. DAVID, ROGER R. SCHMIDT, XIANGFEI YU, ROBERT K. MULLADY
  • Patent number: 11197394
    Abstract: Apparatuses and methods are provided for blocking removal of an air-moving assembly from a housing when in operational state. The apparatus includes a protective louver assembly having a louver(s) and an interlock element(s). The louver(s) is disposed at an air inlet or an air outlet of the air-moving assembly, and pivots between an operational and a quiesced orientation, dependent on presence or absence, respectively, of airflow through the air-moving assembly. The interlock element(s) is associated with the louver(s) to pivot with the louver(s) between the operational orientation and the quiesced orientation. In the operational orientation, the interlock element(s) blocks, at least in part, access to at least one fastener securing the air-moving assembly within the housing, and thereby prevents removal of the air-moving assembly from the chassis when in the operational state.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: December 7, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Christopher R. Ciraulo, Milnes P. David, Dustin W. Demetriou, Robert K. Mullady, Roger R. Schmidt
  • Patent number: 11147190
    Abstract: Apparatuses and methods are provided for protectively covering an air inlet or outlet of an air-moving assembly. The apparatus includes a protective cover assembly, which includes a retractable cover and a spring-biasing mechanism. The retractable cover transitions between a retracted state, when the air-moving assembly is operatively positioned within the chassis, and in extended state, when the air-moving assembly is withdrawn from the chassis. In retracted state, the retractable cover is retracted away from the air inlet or outlet, and in extended state, the retractable cover covers, at least partially, the air inlet or outlet. The spring-biasing mechanism is coupled to the retractable cover and biases the retractable cover in the extended state when the air-moving assembly is withdrawn from the chassis, and compresses to allow transition of the retractable cover to the retracted state as the air-moving assembly is inserted into operative position within the chassis.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: October 12, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Christopher R. Ciraulo, Milnes P. David, Dustin W. Demetriou, Robert K. Mullady, Roger R. Schmidt
  • Patent number: 11019755
    Abstract: Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: May 25, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. ELLSWORTH, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 10753236
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Roger R. Schmidt, Robert E. Simons
  • Patent number: 10734307
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: August 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 10694644
    Abstract: A method of providing a cooling apparatus for cooling a heat-dissipating component(s) of an electronics enclosure includes: providing a thermal conductor to couple to the heat-dissipating component(s), the thermal conductor including a first conductor portion coupled to the heat-dissipating component, and a second conductor portion to position along an air inlet side of the electronics enclosure, so that in operation, the first conductor portion transfers heat from the component(s) to the second conductor portion; coupling at least one air-cooled heat sink to the second conductor portion to facilitate transfer of heat to airflow ingressing into the enclosure; providing at least one thermoelectric device coupled to the first or second conductor portion to facilitate providing active auxiliary cooling to the thermal conductor; and providing a controller to control operation of the thermoelectric device(s) and to selectively switch operation of the cooling apparatus between active and passive cooling modes.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: June 23, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Michael J. Ellsworth, Jr., Milnes P. David, Dustin W. Demetriou, Roger R. Schmidt, Robert E. Simons
  • Publication number: 20200178422
    Abstract: Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
    Type: Application
    Filed: January 22, 2020
    Publication date: June 4, 2020
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 10595447
    Abstract: Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: March 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 10544707
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: January 28, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Roger R. Schmidt, Robert E. Simons
  • Publication number: 20200011209
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 9, 2020
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20190157186
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 10299409
    Abstract: Apparatuses and methods are provided for blocking removal of an air-moving assembly from a chassis when in operational state. The apparatus includes a protective louver assembly having a louver(s) and an interlock element(s). The louver(s) is disposed at an air inlet or an air outlet of the air-moving assembly, and pivots between an operational and a quiesced orientation, dependent on presence or absence, respectively, of airflow through the air-moving assembly. The interlock element(s) is associated with the louver(s) to pivot with the louver(s) between the operational orientation and the quiesced orientation. In the operational orientation, the interlock element(s) blocks, at least in part, access to at least one fastener securing the air-moving assembly within the chassis, and thereby prevents removal of the air-moving assembly from the chassis when in the operational state.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: May 21, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Christopher R. Ciraulo, Milnes P. David, Dustin W. Demetriou, Robert K. Mullady, Roger R. Schmidt
  • Publication number: 20190150320
    Abstract: Apparatuses and methods are provided for protectively covering an air inlet or outlet of an air-moving assembly. The apparatus includes a protective cover assembly, which includes a retractable cover and a spring-biasing mechanism. The retractable cover transitions between a retracted state, when the air-moving assembly is operatively positioned within the chassis, and in extended state, when the air-moving assembly is withdrawn from the chassis. In retracted state, the retractable cover is retracted away from the air inlet or outlet, and in extended state, the retractable cover covers, at least partially, the air inlet or outlet. The spring-biasing mechanism is coupled to the retractable cover and biases the retractable cover in the extended state when the air-moving assembly is withdrawn from the chassis, and compresses to allow transition of the retractable cover to the retracted state as the air-moving assembly is inserted into operative position within the chassis.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventors: Levi A. CAMPBELL, Christopher R. CIRAULO, Milnes P. DAVID, Dustin W. DEMETRIOU, Robert K. MULLADY, Roger R. SCHMIDT
  • Patent number: 10287925
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: May 14, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Roger R. Schmidt, Robert E. Simons
  • Patent number: 10271459
    Abstract: Apparatuses and methods are provided for protectively covering an air inlet or outlet of an air-moving assembly. The apparatus includes a protective cover assembly, which includes a retractable cover and a spring-biasing mechanism. The retractable cover transitions between a retracted state, when the air-moving assembly is operatively positioned within the chassis, and in extended state, when the air-moving assembly is withdrawn from the chassis. In retracted state, the retractable cover is retracted away from the air inlet or outlet, and in extended state, the retractable cover covers, at least partially, the air inlet or outlet. The spring-biasing mechanism is coupled to the retractable cover and biases the retractable cover in the extended state when the air-moving assembly is withdrawn from the chassis, and compresses to allow transition of the retractable cover to the retracted state as the air-moving assembly is inserted into operative position within the chassis.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: April 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Christopher R. Ciraulo, Milnes P. David, Dustin W. Demetriou, Robert K. Mullady, Roger R. Schmidt
  • Patent number: 10265812
    Abstract: Liquid-cooled heat sink assemblies are provided which include: a heat transfer element including a heat transfer base with opposite first and second sides and a plurality of thermally conductive fins extending from the first side, and with the second side of the heat transfer base to couple to a component(s) to be cooled. The heat sink assembly further includes a coolant-carrying structure attached to the heat transfer element. The coolant-carrying structure includes a coolant-carrying base, and a coolant-carrying compartment through which liquid coolant flows. The coolant-carrying base includes a plurality of fin-receiving openings sized and positioned for the plurality of thermally conductive fins to extend therethrough. The plurality of thermally conductive fins extend into the coolant-carrying compartment through which the liquid coolant flows. In one or more embodiments, the heat transfer element is a metal structure and the coolant-carrying structure is a plastic structure.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: April 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dylan J. Boday, Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons, Prabjit Singh, Jason T. Wertz
  • Patent number: 10249555
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 2, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 10244665
    Abstract: Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: March 26, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons