Patents by Inventor Roger R. Wills

Roger R. Wills has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6635128
    Abstract: A work-hardened poppet exhaust valve for internal combustion engines is obtained from a solutioned work-hardenable austenitic stainless steel coil or bar stock in which chromium is present in the range of 13%-25% by weight, nickel is present in the range of 4%-16% by weight, manganese is present in the range of 0.25%-8% by weight, copper is present in the range of 0.5%-7% by weight, the interstitial elements carbon plus nitrogen are present in a total amount less than 0.45% by nitrogen are present in a total amount less than 0.45% by weight, and at least one refractory metal selected from the group consisting of molybdenum, niobium, vanadium, tungsten and tantalum is present in the range of 1%-5% by weight. The coil or bar stock is extruded to a poppet valve preform configuration at a temperature in the range of room temperature to 1,000° F., and at a true strain of more than 0.8. The parameters of extrusion provide said work-hardened poppet valve with a stem hardness more than Rc=25.
    Type: Grant
    Filed: November 28, 1994
    Date of Patent: October 21, 2003
    Assignee: TRW Inc.
    Inventors: William Neumann, Roger R. Wills, Mohan Kurup, Victor Levin
  • Patent number: 5425821
    Abstract: The present invention resides in a method for making an internal combustion engine intake valve. An iron aluminum alloy, in the form of a coil or bar stock, is provided. The alloy comprises 76.05 to 90.15 weight percent iron, 9 to 13.3 weight percent aluminum, 0.05 to 0.35 weight percent carbon, and 0.5 to 3 weight percent of a refractory metal, and/or 0.3 to 1.5 weight percent of titanium in combination with, or in place of, the refractory metal. The coil or bar stock is extruded to a poppet valve preform configuration at a heading temperature in the range of 800.degree. to 2,000.degree. F. and a true strain of about 0.5 to 2.2. The preform configuration is then headed to a pre-machined configuration while maintaining the head of such preform at an effective heading temperature up to 2,200.degree. F. said heading being carried out at a true strain of about 1.4 to 2.3.
    Type: Grant
    Filed: May 13, 1994
    Date of Patent: June 20, 1995
    Assignee: TRW Inc.
    Inventors: Mohan Kurup, Roger R. Wills, Mark S. Scherer
  • Patent number: 5328527
    Abstract: The present invention resides in a method for making an internal combustion engine intake valve. An iron aluminum alloy, in the form of a coil or bar stock, is provided. The alloy comprises 76.05 to 90.15 weight percent iron, 9 to 13.3 weight percent aluminum, 0.05 to 0.35 weight percent carbon, and 0.5 to 3 weight percent of a refractory metal, and/or 0.3 to 1.5 weight percent of titanium in combination with, or in place of, the refractory metal. The coil or bar stock is extruded to a poppet valve preform configuration at a heading temperature in the range of 800.degree. to 2,000.degree. F. and a true strain of about 0.5 to 2.2. The preform configuration is then headed to a pre-machined configuration while maintaining the head of such preform at an effective heading temperature up to 2,200.degree. F., said heading being carried out at a true strain of about 1.4 to 2.3.
    Type: Grant
    Filed: December 15, 1992
    Date of Patent: July 12, 1994
    Assignee: TRW Inc.
    Inventors: Mohan Kurup, Roger R. Wills, Mark S. Scherer
  • Patent number: 5257453
    Abstract: A method of making work-hardened poppet exhaust valves for internal combustion engines comprises the steps of: providing a solutioned work-hardenable austenitic stainless steel coil or bar stock in which chromium is present in the range of 13%-25% by weight, nickel is present in the range of 4%-16% by weight, manganese is present in the range of 0.25%-8% by weight, copper is present in the range of 0.5%-7% by weight, the interstitial elements carbon plus nitrogen are present in a total amount less than 0.45% by weight, and at least one refractory metal selected from the group consisting of molybdenum, niobium, vanadium, tungsten and tantalum is present in the range of 1%-5% by weight; extruding the coil stock to a poppet valve preform configuration at a speed in the range of 60 to 100 strokes per minute and at a temperature in the range of room temperature to 1,000.degree. F.
    Type: Grant
    Filed: July 8, 1992
    Date of Patent: November 2, 1993
    Assignee: TRW Inc.
    Inventors: William Neumann, Roger R. Wills, Mohan Kurup, Victor Levin
  • Patent number: 4619817
    Abstract: The invention is characterized by two main methods of producing stabilized or partially stabilized zirconia powders with controlled particle size by use of complexing agents and hydrothermal treatment. A further embodiment of the invention is characterized by a combination of the first two methods to produce powders containing more than one major particle size. The invention also allows use of low cost readily available starting material, controlled doping level and incorporation of dual constituents such as MgO, CaO; Y.sub.2 O.sub.3, MgO; or Y.sub.2 O.sub.3, CaO in the structure for production of stabilized zirconia. Triply stabilized zirconia containing Y.sub.2 O.sub.3, MgO and CaO may also be produced. A final embodiment of the invention allows the production of dually and triply stabilized zirconia by hydrothermal treatment without the use of complexing agents.
    Type: Grant
    Filed: March 27, 1985
    Date of Patent: October 28, 1986
    Assignee: Battelle Memorial Institute
    Inventors: Edgel P. Stambaugh, James H. Adair, Ibrahim Sekercioglu, Roger R. Wills
  • Patent number: 4043381
    Abstract: In the casting of metal alloys to form hollow articles, a mold of a desired shape containing a core material fabricated to a desired configuration from a silicon yttrium or silicon lanthanide oxynitride is filled with a molten metal alloy while maintaining the mold under a vacuum or under a blanket of an inert gas after which the mold is allowed to cool slowly to room temperature. The casted metal alloy with the core material exposed at one end is removed from the mold and heated under ambient conditions, thereby causing the silicon yttrium or silicon lanthanide oxynitride to oxidize with a large volume expansion and a concomitant catastrophic failure of the core material. The broken pieces of core material are removed from the casting which has a smooth inner surface, an indication that no chemical reactions have occurred between the alloy and the core material.
    Type: Grant
    Filed: August 9, 1976
    Date of Patent: August 23, 1977
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Khodabakhsh S. Mazdiyasni, Roger R. Wills