Patents by Inventor Roman Devengenzo

Roman Devengenzo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240138935
    Abstract: An apparatus includes a cart having a vertical adjustment element configured to adjust a distance between the platform and a ground supporting the cart, the cart defining a surface for supporting an arm of the patient. The apparatus includes a manipulation device including a plurality of motors each configured to operably couple to a different one of a needle, a catheter, and a guidewire to selectively advance one or more of the needle, the catheter, and the guidewire, and a robotic arm having a first end mounted to the cart and a second end coupled to the manipulation device, the robotic arm having a plurality of segments joined together via a plurality of joints such that the robotic arm can be moved to position the needle, the catheter, and the guidewire for insertion into a target vessel in the arm.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 2, 2024
    Applicant: Hyperion Surgical, Inc.
    Inventors: Jonathan AZEVEDO, Roman DEVENGENZO
  • Patent number: 11903663
    Abstract: An apparatus includes a cart having a vertical adjustment element configured to adjust a distance between the platform and a ground supporting the cart, the cart defining a surface for supporting an arm of the patient. The apparatus includes a manipulation device including a plurality of motors each configured to operably couple to a different one of a needle, a catheter, and a guidewire to selectively advance one or more of the needle, the catheter, and the guidewire, and a robotic arm having a first end mounted to the cart and a second end coupled to the manipulation device, the robotic arm having a plurality of segments joined together via a plurality of joints such that the robotic arm can be moved to position the needle, the catheter, and the guidewire for insertion into a target vessel in the arm.
    Type: Grant
    Filed: April 6, 2023
    Date of Patent: February 20, 2024
    Assignee: Hyperion Surgical, Inc.
    Inventors: Jonathan Azevedo, Roman Devengenzo
  • Publication number: 20230392674
    Abstract: In one variation, a pulley arrangement includes a base pulley portion rotatable within a driving plane, an adjustable pulley portion coupled to the base pulley portion wherein the adjustable pulley portion is rotatable relative to the base pulley portion within the driving plane, and a driving member including an end coupled to the adjustable pulley portion wherein at least a portion of the driving member is wrapped at least partially around the adjustable pulley portion. In another variation, a pulley arrangement includes a base pulley portion rotatable around an axis, an adjustable pulley portion coupled to the base pulley portion and movable in a first direction parallel to the axis, and a sliding block engaged with the adjustable pulley portion, wherein the sliding block moves in a second direction different from the first direction, in response to compression of the adjustable pulley portion against the base pulley portion.
    Type: Application
    Filed: August 24, 2023
    Publication date: December 7, 2023
    Inventors: Roman DEVENGENZO, Matthew Reagan WILLIAMS, Stephen John MORFEY, Ricardo Alfonso LEÓN, Andrew METZGER, Karen Shakespear KOENIG, Vijay SOUNDARARAJAN
  • Patent number: 11767902
    Abstract: In one variation, a pulley arrangement includes a base pulley portion rotatable within a driving plane, an adjustable pulley portion coupled to the base pulley portion wherein the adjustable pulley portion is rotatable relative to the base pulley portion within the driving plane, and a driving member including an end coupled to the adjustable pulley portion wherein at least a portion of the driving member is wrapped at least partially around the adjustable pulley portion. In another variation, a pulley arrangement includes a base pulley portion rotatable around an axis, an adjustable pulley portion coupled to the base pulley portion and movable in a first direction parallel to the axis, and a sliding block engaged with the adjustable pulley portion, wherein the sliding block moves in a second direction different from the first direction, in response to compression of the adjustable pulley portion against the base pulley portion.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: September 26, 2023
    Assignee: Verb Surgical Inc.
    Inventors: Roman Devengenzo, Matthew Reagan Williams, Stephen John Morfey, Ricardo Alfonso León, Andrew Metzger, Karen Shakespear Koenig, Vijay Soundararajan
  • Publication number: 20230240771
    Abstract: An apparatus includes a cart having a vertical adjustment element configured to adjust a distance between the platform and a ground supporting the cart, the cart defining a surface for supporting an arm of the patient. The apparatus includes a manipulation device including a plurality of motors each configured to operably couple to a different one of a needle, a catheter, and a guidewire to selectively advance one or more of the needle, the catheter, and the guidewire, and a robotic arm having a first end mounted to the cart and a second end coupled to the manipulation device, the robotic arm having a plurality of segments joined together via a plurality of joints such that the robotic arm can be moved to position the needle, the catheter, and the guidewire for insertion into a target vessel in the arm.
    Type: Application
    Filed: April 6, 2023
    Publication date: August 3, 2023
    Inventors: Jonathan AZEVEDO, Roman DEVENGENZO
  • Publication number: 20230210097
    Abstract: Embodiments of the present disclosure can provide an automated mass rearing system for insect larvae. The automated mass rearing system can facilitate hatching, feeding, monitoring the growth and emergence of insect larvae and pupae. In some embodiments, the automated mass rearing system can include a production unit, a transportation unit, a storage unit, a dispensing unit, and a monitoring unit. In some embodiments, this automated mass rearing system can facilitate mass mosquito growth from egg hatching all the way through to full adults or certain stages in between such as the larvae rearing process (i.e., from larvae to pupae) with little or no human intervention. By automating the rearing and transportation of insect eggs, larvae, and pupae, deaths or developmental issues can be minimized. Various techniques and apparatuses are used in this automation that causes minimal disturbance to the insects during development, and thereby maximizing survival rate and fitness of the insects.
    Type: Application
    Filed: October 14, 2022
    Publication date: July 6, 2023
    Applicant: Verily Life Sciences LLC
    Inventors: Peter Massaro, Robert Sobecki, Charles Behling, Victor Criswell, Tiantian Zha, Roman Devengenzo
  • Patent number: 11678944
    Abstract: Manipulators and cartridges for robotic-assisted vascular access are described herein. In some embodiments, an apparatus includes a cartridge including a guidewire, a needle, and a catheter that are coaxially disposed with respect to each other; and a plurality of guides coupled to the guidewire, the needle, and the catheter; a manipulation device including a plurality of actuators each configured to couple to a different guide member of the plurality of guides, the plurality of actuators being configured to linearly advance and retract the plurality of guides to move the needle, the guidewire, and the catheter; and a control unit operatively coupled to the manipulation device, the control unit configured to control the plurality of actuators to selectively move the needle, the guidewire, and the catheter to gain access via the catheter to a target vessel of a patient.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: June 20, 2023
    Assignee: Hyperion Surgical, Inc.
    Inventors: Jonathan Azevedo, Roman Devengenzo
  • Publication number: 20230116397
    Abstract: Robotic arms and surgical robotic systems incorporating such arms are described. A robotic arm includes a roll joint connected to a prismatic link by a pitch joint and a tool drive connected to the prismatic link by another pitch joint. The prismatic link includes several prismatic sublinks that are connected by a prismatic joint. A surgical tool supported by the tool drive can insert into a patient along an insertion axis through a remote center of motion of the robotic arm. Movement of the robotic arm can be controlled to telescopically move the prismatic sublinks relative to each other by the prismatic joint while maintaining the remote center of motion fixed. Other embodiments are also described and claimed.
    Type: Application
    Filed: December 14, 2022
    Publication date: April 13, 2023
    Inventors: Roman Devengenzo, Pablo Garcia Kilroy
  • Publication number: 20230076502
    Abstract: An apparatus for vascular access is described herein. The apparatus can comprise a cart movable from a first location to a second location near a patient, a manipulating device configured to releasably couple a cartridge including a needle, a catheter, and a guidewire that are coaxially disposed with respect to each other, and a robotic arm having a first end mounted to the cart and a second end coupled to the manipulating device. The manipulation device can include a plurality of actuation mechanisms configured to selectively advance the needle, the catheter, and the guidewire when the manipulating device is coupled to the cartridge. The robotic arm can include a plurality of joints that are configured to rotate about a plurality of axes to position the cartridge relative to the arm of the patient such that the needle, the catheter, and the guidewire can be inserted into a target vessel of the patient.
    Type: Application
    Filed: March 21, 2022
    Publication date: March 9, 2023
    Inventors: Jonathan AZEVEDO, Roman DEVENGENZO
  • Patent number: 11553973
    Abstract: Robotic arms and surgical robotic systems incorporating such arms are described. A robotic arm includes a roll joint connected to a prismatic link by a pitch joint and a tool drive connected to the prismatic link by another pitch joint. The prismatic link includes several prismatic sublinks that are connected by a prismatic joint. A surgical tool supported by the tool drive can insert into a patient along an insertion axis through a remote center of motion of the robotic arm. Movement of the robotic arm can be controlled to telescopically move the prismatic sublinks relative to each other by the prismatic joint while maintaining the remote center of motion fixed. Other embodiments are also described and claimed.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: January 17, 2023
    Assignee: VERB SURGICAL INC.
    Inventors: Roman Devengenzo, Pablo Garcia Kilroy
  • Patent number: 11490604
    Abstract: Embodiments of the present disclosure can provide an automated mass rearing system for insect larvae. The automated mass rearing system can facilitate hatching, feeding, monitoring the growth and emergence of insect larvae and pupae. In some embodiments, the automated mass rearing system can include a production unit, a transportation unit, a storage unit, a dispensing unit, and a monitoring unit. In some embodiments, this automated mass rearing system can facilitate mass mosquito growth from egg hatching all the way through to full adults or certain stages in between such as the larvae rearing process (i.e., from larvae to pupae) with little or no human intervention. By automating the rearing and transportation of insect eggs, larvae, and pupae, deaths or developmental issues can be minimized. Various techniques and apparatuses are used in this automation that causes minimal disturbance to the insects during development, and thereby maximizing survival rate and fitness of the insects.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: November 8, 2022
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Peter Massaro, Robert Sobecki, Charles Behling, Victor Criswell, Tiantian Zha, Roman Devengenzo
  • Publication number: 20220250259
    Abstract: In one variation, a pulley arrangement includes a base pulley portion rotatable within a driving plane, an adjustable pulley portion coupled to the base pulley portion wherein the adjustable pulley portion is rotatable relative to the base pulley portion within the driving plane, and a driving member including an end coupled to the adjustable pulley portion wherein at least a portion of the driving member is wrapped at least partially around the adjustable pulley portion. In another variation, a pulley arrangement includes a base pulley portion rotatable around an axis, an adjustable pulley portion coupled to the base pulley portion and movable in a first direction parallel to the axis, and a sliding block engaged with the adjustable pulley portion, wherein the sliding block moves in a second direction different from the first direction, in response to compression of the adjustable pulley portion against the base pulley portion.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 11, 2022
    Applicant: Verb Surgical Inc.
    Inventors: Roman DEVENGENZO, Matthew Reagan WILLIAMS, Stephen John MORFEY, Ricardo Alfonso LEÓN, Andrew METZGER, Karen Shakespear KOENIG, Vijay SOUNDARARAJAN
  • Patent number: 11345053
    Abstract: In one variation, a pulley arrangement includes a base pulley portion rotatable within a driving plane, an adjustable pulley portion coupled to the base pulley portion wherein the adjustable pulley portion is rotatable relative to the base pulley portion within the driving plane, and a driving member including an end coupled to the adjustable pulley portion wherein at least a portion of the driving member is wrapped at least partially around the adjustable pulley portion. In another variation, a pulley arrangement includes a base pulley portion rotatable around an axis, an adjustable pulley portion coupled to the base pulley portion and movable in a first direction parallel to the axis, and a sliding block engaged with the adjustable pulley portion, wherein the sliding block moves in a second direction different from the first direction, in response to compression of the adjustable pulley portion against the base pulley portion.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: May 31, 2022
    Assignee: VERB SURGICAL INC.
    Inventors: Roman Devengenzo, Matthew Reagan Williams, Stephen John Morfey, Ricardo Alfonso León, Andrew Metzger, Karen Shakespear Koenig, Vijay Soundararajan
  • Publication number: 20210030496
    Abstract: Robotic arms and surgical robotic systems incorporating such arms are described. A robotic arm includes a roll joint connected to a prismatic link by a pitch joint and a tool drive connected to the prismatic link by another pitch joint. The prismatic link includes several prismatic sublinks that are connected by a prismatic joint. A surgical tool supported by the tool drive can insert into a patient along an insertion axis through a remote center of motion of the robotic arm. Movement of the robotic arm can be controlled to telescopically move the prismatic sublinks relative to each other by the prismatic joint while maintaining the remote center of motion fixed. Other embodiments are also described and claimed.
    Type: Application
    Filed: July 29, 2019
    Publication date: February 4, 2021
    Inventors: Roman Devengenzo, Pablo Garcia Kilroy
  • Patent number: 10779899
    Abstract: Devices, systems, and methods include a teleoperated system including a kinematic structure having a joint, a drive or brake system for controlling the joint, and a computing unit coupled with the drive or brake system. The computing unit is configured to detect that the joint is between a software defined range of motion limit for the joint and a physical range of motion limit for the joint, the software defined range of motion limit being spaced a distance apart from the physical range of motion limit and delay for a duration of time, in response to detecting the joint between the software defined range of motion limit and the physical range of motion limit, applying the drive or brake system to stop motion of the joint.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: September 22, 2020
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. Griffiths, Paul W. Mohr, Brandon D. Itkowitz, Thomas R. Nixon, Roman Devengenzo
  • Patent number: 10779521
    Abstract: Embodiments of the present disclosure can provide an automated mass rearing system for insect larvae. The automated mass rearing system can facilitate hatching, feeding, monitoring the growth and emergence of insect larvae and pupae. In some embodiments, the automated mass rearing system can include a production unit, a transportation unit, a storage unit, a dispensing unit, and a monitoring unit. In some embodiments, this automated mass rearing system can facilitate mass mosquito growth from egg hatching all the way through to full adults or certain stages in between such as the larvae rearing process (i.e., from larvae to pupae) with little or no human intervention. By automating the rearing and transportation of insect eggs, larvae, and pupae, deaths or developmental issues can be minimized. Various techniques and apparatuses are used in this automation that causes minimal disturbance to the insects during development, and thereby maximizing survival rate and fitness of the insects.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: September 22, 2020
    Assignee: Verily Life Sciences LLC
    Inventors: Peter Massaro, Robert Sobecki, Charles Behling, Victor Criswell, Tiantian Zha, Roman Devengenzo
  • Publication number: 20200260699
    Abstract: Embodiments of the present disclosure can provide an automated mass rearing system for insect larvae. The automated mass rearing system can facilitate hatching, feeding, monitoring the growth and emergence of insect larvae and pupae. In some embodiments, the automated mass rearing system can include a production unit, a transportation unit, a storage unit, a dispensing unit, and a monitoring unit. In some embodiments, this automated mass rearing system can facilitate mass mosquito growth from egg hatching all the way through to full adults or certain stages in between such as the larvae rearing process (i.e., from larvae to pupae) with little or no human intervention. By automating the rearing and transportation of insect eggs, larvae, and pupae, deaths or developmental issues can be minimized. Various techniques and apparatuses are used in this automation that causes minimal disturbance to the insects during development, and thereby maximizing survival rate and fitness of the insects.
    Type: Application
    Filed: April 23, 2020
    Publication date: August 20, 2020
    Applicant: Verily Life Sciences LLC
    Inventors: Peter Massaro, Robert Sobecki, Charles Behling, Victor Criswell, Tiantian Zha, Roman Devengenzo
  • Publication number: 20180318023
    Abstract: Devices, systems, and methods include a teleoperated system including a kinematic structure having a joint, a drive or brake system for controlling the joint, and a computing unit coupled with the drive or brake system. The computing unit is configured to detect that the joint is between a software defined range of motion limit for the joint and a physical range of motion limit for the joint, the software defined range of motion limit being spaced a distance apart from the physical range of motion limit and delay for a duration of time, in response to detecting the joint between the software defined range of motion limit and the physical range of motion limit, applying the drive or brake system to stop motion of the joint.
    Type: Application
    Filed: June 22, 2018
    Publication date: November 8, 2018
    Inventors: Paul G. Griffiths, Paul W. Mohr, Brandon D. Itkowitz, Thomas R. Nixon, Roman Devengenzo
  • Patent number: 10028793
    Abstract: Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. In some embodiments, actively driven joints will move a platform structure that supports multiple manipulators in response to movement of one of the manipulators, facilitating and expediting the arrangement of the overall system by moving those multiple manipulators as a unit into alignment with the workspace. Systems and methods are also provided to keep one, some, or all joints of the kinematic chain off a hardstop or physical range of motion limit associated with the joint or to otherwise maintain a desired range of motion for one, some, or all joints of the kinematic chain when exiting a set-up mode.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: July 24, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Paul G. Griffiths, Paul W. Mohr, Brandon D. Itkowitz, Thomas R. Nixon, Roman Devengenzo
  • Publication number: 20180092339
    Abstract: Embodiments of the present disclosure can provide an automated mass rearing system for insect larvae. The automated mass rearing system can facilitate hatching, feeding, monitoring the growth and emergence of insect larvae and pupae. In some embodiments, the automated mass rearing system can include a production unit, a transportation unit, a storage unit, a dispensing unit, and a monitoring unit. In some embodiments, this automated mass rearing system can facilitate mass mosquito growth from egg hatching all the way through to full adults or certain stages in between such as the larvae rearing process (i.e., from larvae to pupae) with little or no human intervention. By automating the rearing and transportation of insect eggs, larvae, and pupae, deaths or developmental issues can be minimized. Various techniques and apparatuses are used in this automation that causes minimal disturbance to the insects during development, and thereby maximizing survival rate and fitness of the insects.
    Type: Application
    Filed: September 27, 2017
    Publication date: April 5, 2018
    Inventors: Peter Massaro, Robert Sobecki, Charles Behling, Victor Criswell, Tiantian Zha, Roman Devengenzo