Patents by Inventor Ron A. Balczewski

Ron A. Balczewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115856
    Abstract: Embodiments herein relate to a medical device for treating a cancerous tumor, the medical device having a first lead including a first wire and second wire; a second lead can include a third wire and fourth wire; and a first electrode in electrical communication with the first wire, a second electrode in electrical communication with the second wire, a third electrode in electrical communication with the third wire, and a fourth electrode in electrical communication with the fourth wire. The first and third electrodes form a supply electrode pair configured to deliver one or more electric fields to the cancerous tumor. The second and fourth electrodes form a sensing electrode pair configured to measure an impedance of the cancerous tumor independent of an impedance of the first electrode, the first wire, the third electrode, the third wire, and components in electrical communication therewith. Other embodiments are also included herein.
    Type: Application
    Filed: June 28, 2023
    Publication date: April 11, 2024
    Inventors: Brian L. Schmidt, Devon N. Arnholt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Aleksandra Kharam
  • Patent number: 11864928
    Abstract: Systems and methods for monitoring patients with respiratory diseases are described. A system may include a sensor circuit configured to sense one or more physiological signals indicative of respiratory sounds, and a spectral analyzer to generate first and second spectral contents at respective first and second frequency bands. The system may produce a respiratory anomaly indicator using the first and second spectral contents, or additionally with other physiological parameters. The system may detect an onset or progression of a target respiratory condition such as asthma or chronic obstructive pulmonary disease using the respiratory anomaly indicator, or to trigger or adjust a therapy.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: January 9, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Keith R. Maile, Pramodsingh Hirasingh Thakur, Michael J. Kane, Bin Mi, Ron A. Balczewski, Jeffrey E. Stahmann
  • Publication number: 20230381525
    Abstract: Embodiments herein relate to medical device systems including features to enable secure wireless communications between components thereof. In an embodiment, a medical device system is included having an implantable medical device packaging unit and an implantable device. The implantable device can include a control circuit and a communications antenna. The implantable device can be configured to fit within the implantable medical device packaging unit prior to implantation in a patient. The system can also include a data bearing tag, wherein the data bearing tag is disposed on or in the implantable medical device packaging unit. In some embodiments the system can also include an external communication device. The external communication device can be configured to receive data from the data bearing tag enabling secure wireless communications between the implantable device and the external communication device. Other embodiments are also included herein.
    Type: Application
    Filed: May 23, 2023
    Publication date: November 30, 2023
    Inventors: Daniel Joseph Landherr, Ron A. Balczewski, Keith R. Maile, William J. Linder
  • Publication number: 20230330416
    Abstract: Embodiments herein relate to medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. A medical device system is included having at least one electric field generating circuit configured to generate one or more electric fields; control circuitry in communication with the electric field generating circuit, the control circuitry configured to control delivery of the one or more electric fields from the at least one electric field generating circuit; and two or more electrodes to deliver the electric fields to the site of a cancerous tumor within a patient. At least one electrode can be configured to be implanted. At least one electrode can be configured to be external. The control circuitry can cause the electric field generating circuit to generate one or more electric fields at frequencies selected from a range of between 10 kHz to 1 MHz.
    Type: Application
    Filed: March 20, 2023
    Publication date: October 19, 2023
    Inventors: Brian L. Schmidt, Devon N. Arnholt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Jacob M. Ludwig, Aleksandra Kharam
  • Patent number: 11691006
    Abstract: Embodiments herein relate to a medical device for treating a cancerous tumor, the medical device having a first lead including a first wire and second wire; a second lead can include a third wire and fourth wire; and a first electrode in electrical communication with the first wire, a second electrode in electrical communication with the second wire, a third electrode in electrical communication with the third wire, and a fourth electrode in electrical communication with the fourth wire. The first and third electrodes form a supply electrode pair configured to deliver one or more electric fields to the cancerous tumor. The second and fourth electrodes form a sensing electrode pair configured to measure an impedance of the cancerous tumor independent of an impedance of the first electrode, the first wire, the third electrode, the third wire, and components in electrical communication therewith. Other embodiments are also included herein.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: July 4, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian L. Schmidt, Devon N. Arnholt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Aleksandra Kharam
  • Patent number: 11678847
    Abstract: A medical device includes a case and a core assembly. The core assembly includes operational circuitry enclosed within a core assembly housing. The medical device also includes a battery assembly, which includes a battery enclosed within a battery housing. The case includes the core assembly housing and the battery housing. A first electrode is coupled to, and electrically isolated from, the case; and a second electrode is electrically coupled to the case. The second electrode is electrically coupled to the operational circuitry via a sensing pathway that includes a portion of the case. The battery is electrically coupled to the operational circuitry via an energy supply pathway that includes the portion of the case.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: June 20, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ron A. Balczewski, William J. Linder
  • Patent number: 11679266
    Abstract: Embodiments of the present disclosure relate to implantable medical devices (IMDs). In an exemplary embodiment, an IMD comprises: a housing including a plurality of feedthroughs extending through the housing, a first electrode, a second electrode, and a biocompatible circuit board disposed around an outer surface of the housing. The biocompatible circuit board comprising a plurality of traces, wherein a first trace of the plurality of traces is coupled to the first electrode and a first feedthrough of the plurality of feedthroughs, and a second trace of the plurality of traces is coupled to the first electrode and a second feedthrough of the plurality of feedthroughs.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: June 20, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: James Michael English, Jean M. Bobgan, Keith R. Maile, Ron A. Balczewski
  • Patent number: 11607542
    Abstract: Embodiments herein relate to medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. A medical device system is included having at least one electric field generating circuit configured to generate one or more electric fields; control circuitry in communication with the electric field generating circuit, the control circuitry configured to control delivery of the one or more electric fields from the at least one electric field generating circuit; and two or more electrodes to deliver the electric fields to the site of a cancerous tumor within a patient. At least one electrode can be configured to be implanted. At least one electrode can be configured to be external. The control circuitry can cause the electric field generating circuit to generate one or more electric fields at frequencies selected from a range of between 10 kHz to 1 MHz.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: March 21, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian L. Schmidt, Devon N. Arnholt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Jacob M. Ludwig, Aleksandra Kharam
  • Publication number: 20230072666
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods for supporting components of an implantable medical device. The apparatuses, systems, and methods may include a first electrode and a second electrode and a scaffold assembly configured to support the first electrode and the second electrode.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 9, 2023
    Inventors: Ron A. Balczewski, Jean M. Bobgan, Aleksandra Kharam, David P. Stieper, Scott R. Vanderlinde
  • Publication number: 20230014331
    Abstract: A medical device includes: a case at least a portion of which functions as a first electrode; a second electrode disposed in a header coupled to the case; a core assembly, the core assembly including operational circuitry enclosed within a core assembly housing, wherein the case includes the core assembly housing; and a battery assembly, the battery assembly including a battery enclosed within a battery housing, where the case further comprises the battery housing; where the operational circuitry is configured to drive a regulated voltage onto the case.
    Type: Application
    Filed: September 15, 2022
    Publication date: January 19, 2023
    Inventors: Ron A. Balczewski, William J. Linder, Dan C. Goldman, Nicholas J. Stessman, Aleksandra Kharam
  • Patent number: 11529523
    Abstract: A bridge device includes a housing, a plurality of electrodes exposed outside of the housing such that at least two of the plurality of electrodes can be concurrently placed in contact with a patient's skin. A controller is disposed within the housing. A first communications module is operably coupled to the controller and to the at least two of the plurality of electrodes. The first communications module is configured to allow the controller to communicate with an implantable medical device via at least two of the plurality of electrodes using conducted communication. A second communications module is operably coupled to the controller and is configured to allow the controller to communicate with a remote device external to the patient.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: December 20, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Ron A. Balczewski, William J. Linder, Keith R. Maile
  • Patent number: 11523746
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods for supporting components of an implantable medical device. The apparatuses, systems, and methods may include a first electrode and a second electrode and a scaffold assembly configured to support the first electrode and the second electrode.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: December 13, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ron A. Balczewski, Jean M. Bobgan, Aleksandra Kharam, David P. Stieper, Scott R. Vanderlinde
  • Patent number: 11504538
    Abstract: A system includes a pulse generator including a can electrode and a lead couplable to the pulse generator, the lead including a distal coil electrode and a proximal coil electrode, wherein both of the coil electrodes are electrically uncoupled from the can electrode such that a unipolar sensing vector is provided between at least one of the coil electrodes and the can electrode.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: November 22, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, James O. Gilkerson, Ron A. Balczewski
  • Patent number: 11446509
    Abstract: A medical device includes: a case at least a portion of which functions as a first electrode; a second electrode disposed in a header coupled to the case; a core assembly, the core assembly including operational circuitry enclosed within a core assembly housing, wherein the case includes the core assembly housing; and a battery assembly, the battery assembly including a battery enclosed within a battery housing, where the case further comprises the battery housing; where the operational circuitry is configured to drive a regulated voltage onto the case.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: September 20, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ron A. Balczewski, William J. Linder, Dan C. Goldman, Nicholas J. Stessman, Aleksandra Kharam
  • Publication number: 20220288401
    Abstract: An implantable medical device may include each of a conductive canister, a printed circuit board assembly (PCBA), and a header. A feedthrough and ferrule couple the interior of the canister, where the PCBA is, to one or more elements contained in the header such as an antenna and/or a port for coupling to a lead. The ferrule may be directly attached to the conductive canister and the electronic circuit board. The electronic circuit board carries an RF transmitter for telemetry purposes, and has an RF ground plane layer therein. The ferrule is capacitively coupled to the RF ground plane the PCBA, and has a size and/or shape relative to the RF ground plane that provides sufficient capacitance to offer an improved RF ground plane path to the conductive canister at a desired telemetry frequency.
    Type: Application
    Filed: March 15, 2022
    Publication date: September 15, 2022
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: DANIEL JOSEPH LANDHERR, RON A. BALCZEWSKI, KEITH R. MAILE, BENJAMIN J. HAASL, JASON LAHR, NIHARIKA VARANASI, THAO N. NGUYEN, KATHERINE HAUWILLER
  • Patent number: 11420049
    Abstract: Embodiments herein relate to a medical device for treating a cancerous tumor, including an electric field generating circuit configured to generate one or more electric fields at or near a site of the cancerous tumor and control circuitry in communication with the electric field generating circuit. The medical device includes one or more supply wires in electrical communication with the electric field generating circuit and one or more supply electrodes. The supply electrodes are configured to deliver an electric field at or near the site of the cancerous tumor. The medical device can include one or more sensing wires in electrical communication with the control circuitry and one or more sensing electrodes. The sensing electrodes can be configured to measure an impedance of the cancerous tumor at at least two different electric field strengths. Other embodiments are also included herein.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: August 23, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian L. Schmidt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Sarah Melissa Gruba, Tucker James Nelson, Aleksandra Kharam
  • Publication number: 20220126104
    Abstract: An implantable medical device (IMD) includes a core assembly having a housing with circuitry disposed therein. The IMD also includes an integrated electrode/antenna assembly. The integrated electrode/antenna assembly includes an electrode component and an antenna component.
    Type: Application
    Filed: January 10, 2022
    Publication date: April 28, 2022
    Inventors: Daniel J. Landherr, Niharika Varanasi, Keith R. Maile, Jean M. Bobgan, Ron A. Balczewski, William J. Linder
  • Publication number: 20220111218
    Abstract: Embodiments of the present disclosure relate to implantable medical device (IMD) enclosures. In an exemplary embodiment, an IMD comprises: a housing comprising an open end and a header defining a cavity and comprising at least one conduit through a wall of the header, wherein the header is formed from a non-conductive material. Further, the IMD comprises a coupling member comprising a flange, wherein the flange is configured to be received by the open end of the housing and wherein the flange and the open end of the housing at least partially overlap along an axial direction of the IMD when the flange is received by the open end. Additionally, the IMD comprises an electrode arranged on an outer surface of the header and a feedthrough coupled to the electrode and extending through the conduit of the header, wherein the feedthrough is configured to be coupled to internal circuitry housed within the IMD. Further, the IMD comprises a ring forming a hermetic seal between the coupling member and the header.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 14, 2022
    Inventors: Jean M. Bobgan, James M. English, Keith R. Maile, Ron A. Balczewski
  • Patent number: 11253710
    Abstract: This document discusses, among other things, systems and methods to fabricate and operate an implantable medical device. The implantable medical device can include a housing portion defining an interior chamber. The implantable medical device can include a circuit in the interior chamber. The implantable medical device can include a first electronic component that is not in the interior chamber. The implantable medical device can include a substrate coupled to the housing, the substrate including a first via extending through the substrate, the first via electrically coupling the first electronic component to the circuit.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: February 22, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ron A. Balczewski, James E. Blood, William J. Linder, Jacob M. Ludwig, Keith R. Maile
  • Patent number: 11179106
    Abstract: A medical device configured to be adhesively coupled to an external surface of a subject, and to facilitate physiological monitoring of the subject, includes: a first portion having a housing that at least partially encloses an interior chamber and has a grip portion that has a peanut-like shape; and a second portion including a flexible patch configured to facilitate operably coupling the first portion to the subject. The flexible patch includes third and fourth sensor connections configured to operably interface with the first and second sensor connections, respectively; first and second sensing elements; and a flexible circuit assembly configured to electrically couple the third sensor connection to the first sensing element and the fourth sensor connection to the second sensing element. An adhesive assembly is configured to couple the first portion to the second portion, and includes conductive adhesive portions.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: November 23, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ron A. Balczewski, Aleksandra Kharam