Patents by Inventor Ronan de Larminat

Ronan de Larminat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7239168
    Abstract: A method and apparatus for measuring current by a single sensor for two motor phases driven by first and second set of switches to drive respective first and second phases of a motor under control of PWM signals. A first step 100 includes reading a duty cycle of each winding drive current. A next step configures 104, 110, 114, 116, 118 the PWM signals to provide at least one timing window wherein at least of one of the windings of the motor is being driven while the other winding is not being driven, and to provide a relative timing offset of approximately one-half cycle between the pulse width modulation signals driving a first winding and a second winding of the motor. A next step 90 includes gating the switches with the configured PWM signals. A next step 95 includes sampling the current of the at least one of the windings with a single sensor.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: July 3, 2007
    Assignee: Temic Automotive of North America, Inc.
    Inventors: Ronan de Larminat, Alexander Kurnia, Guang Liu
  • Patent number: 7136733
    Abstract: A method and system for detecting faults in an electric power-assisted steering system includes determining a voltage vector of an electric power-assisted steering motor and measuring a current vector of the motor. Acceptable angular relationships are defined between the voltage vector and the current vector, which are then compared to find a fault if the angle does not meet the acceptable angular relationship. Additionally, motor direction and position can also be used against an angular check of the voltage and/or current vector. Similarly, torque direction can be used. In this way, several different faults can be determined dynamically under transient conditions.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: November 14, 2006
    Assignee: Motorola, Inc.
    Inventors: Guang Liu, Ronan De Larminat, Alexander Kurnia, Scott W. Repplinger
  • Patent number: 7109742
    Abstract: A method and apparatus for measuring current by a single sensor for two motor phases driven by first and second set of switches to drive respective first and second phases of a motor under control of PWM signals. A first step 100 includes reading a duty cycle of each winding drive current. A next step configures 104, 110, 114, 116, 118 the PWM signals to provide at least one timing window wherein at least of one of the windings of the motor is being driven while the other winding is not being driven, and to provide a relative timing offset of approximately one-half cycle between the pulse width modulation signals driving a first winding and a second winding of the motor. A next step 90 includes gating the switches with the configured PWM signals. A next step 95 includes sampling the current of the at least one of the windings with a single sensor.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: September 19, 2006
    Assignee: Motorola, Inc.
    Inventors: Ronan de Larminat, Alexander Kurnia, Guang Liu
  • Publication number: 20060125513
    Abstract: A method and apparatus for measuring current by a single sensor for two motor phases driven by first and second set of switches to drive respective first and second phases of a motor under control of PWM signals. A first step 100 includes reading a duty cycle of each winding drive current. A next step configures 104, 110, 114, 116, 118 the PWM signals to provide at least one timing window wherein at least of one of the windings of the motor is being driven while the other winding is not being driven, and to provide a relative timing offset of approximately one-half cycle between the pulse width modulation signals driving a first winding and a second winding of the motor. A next step 90 includes gating the switches with the configured PWM signals. A next step 95 includes sampling the current of the at least one of the windings with a single sensor.
    Type: Application
    Filed: February 16, 2006
    Publication date: June 15, 2006
    Inventors: Ronan de Larminat, Alexander Kumia, Guang Liu
  • Publication number: 20060006899
    Abstract: A method and apparatus for measuring current by a single sensor for two motor phases driven by first and second set of switches to drive respective first and second phases of a motor under control of PWM signals. A first step 100 includes reading a duty cycle of each winding drive current. A next step configures 104, 110, 114, 116, 118 the PWM signals to provide at least one timing window wherein at least of one of the windings of the motor is being driven while the other winding is not being driven, and to provide a relative timing offset of approximately one-half cycle between the pulse width modulation signals driving a first winding and a second winding of the motor. A next step 90 includes gating the switches with the configured PWM signals. A next step 95 includes sampling the current of the at least one of the windings with a single sensor.
    Type: Application
    Filed: July 12, 2004
    Publication date: January 12, 2006
    Inventors: Ronan de Larminat, Alexander Kurnia, Guang Liu
  • Patent number: 6738718
    Abstract: An apparatus (100) for measuring torque and flux current in an AC synchronous drive motor (108), having a shaft (110) magnetically coupled to an a-phase stator, a b-phase stator and a c-phase stator, includes a shaft position indicator (112) that is coupled to the shaft (110) and that generates a position signal indicative of a position of the shaft (110). A current sensing circuit (114) generates a current signal indicative of instantaneous direct link current of the motor (108). A sample and hold amplifier (116) samples the current signal when a trigger input is asserted. A processor (120) asserts the trigger input from trigger generation (124). The processor (120) calculates torque generated by the motor (108) and flux current in the motor (108) based on the current signal value and decoding algorithm (122).
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: May 18, 2004
    Assignee: Motorola, Inc.
    Inventors: Alexander Kurnia, Ronan De Larminat
  • Patent number: 6735537
    Abstract: A method for measuring the current in each phase of a three-phase motor (26) by the sensor (32), the motor (26) being controlled by a plurality of switching devices (S1-S6) that receive pulse width modulation signals from a controller (34). In one embodiment, a first and second sampling window (t1 and t2) are monitored. When both the first and second sampling windows (t1 and t2) are less than a minimum sampling window (mw), the voltage pulse trains associated with the highest output (V_h) and the lowest output (V_l) are shifted to form a first modified sampling window (t1′) and a modified second sampling window (t2′). When the first sampling window (t1) is less than the minimum sampling window and the second sampling window (t2) is greater than the minimum sampling window (mw), then the voltage pulse train associated with the highest output (V_h) and/or the middle output (V_m) may be shifted to form the first and second modified sampling windows (t1′ and t2′).
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: May 11, 2004
    Assignee: Motorola, Inc.
    Inventors: Guang Liu, Alexander Kurnia, Ronan De'Larminat
  • Publication number: 20030184170
    Abstract: An apparatus (100) for measuring torque and flux current in an AC synchronous drive motor (108), having a shaft (110) magnetically coupled to an a-phase stator, a b-phase stator and a c-phase stator, includes a shaft position indicator (112) that is coupled to the shaft (110) and that generates a position signal indicative of a position of the shaft (110). A current sensing circuit (114) generates a current signal indicative of instantaneous direct link current of the motor (108). A sample and hold amplifier (116) samples the current signal when a trigger input is asserted. A processor (120) asserts the trigger input from trigger generation (124). The processor (120) calculates torque generated by the motor (108) and flux current in the motor (108) based on the current signal value and decoding algorithm (122).
    Type: Application
    Filed: March 27, 2002
    Publication date: October 2, 2003
    Inventors: Alexander Kurnia, Ronan De Larminat
  • Publication number: 20030173946
    Abstract: A method for measuring the current in each phase of a three-phase motor (26) by the sensor (32), the motor (26) being controlled by a plurality of switching devices (S1-S6) that receive pulse width modulation signals from a controller (34). In one embodiment, a first and second sampling window (t1 and t2) are monitored. When both the first and second sampling windows (t1 and t2) are less than a minimum sampling window (mw), the voltage pulse trains associated with the highest output (V_h) and the lowest output (V_l) are shifted to form a first modified sampling window (t1′) and a modified second sampling window (t2′). When the first sampling window (t1) is less than the minimum sampling window and the second sampling window (t2) is greater than the minimum sampling window (mw), then the voltage pulse train associated with the highest output (V_h) and/or the middle output (V_m) may be shifted to form the first and second modified sampling windows (t1′ and t2′).
    Type: Application
    Filed: March 15, 2002
    Publication date: September 18, 2003
    Inventors: Guang Liu, Alexander Kurnia, Ronan De'Larminat