Patents by Inventor Rosana Esteller

Rosana Esteller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11504539
    Abstract: An example of a neurostimulation system may include a storage device for storing data representing physiological signals and a user interface including a user input, a display screen, and a presentation control circuit. The user input may be configured to receive a selection of signal(s) from the physiological signals and a selection of viewing mode from viewing modes including a metric mode and/or a presence mode. The metric mode allows for visualization of a signal property indicated by a parameter measured from the selected signal(s). The presence mode allows for viewing presence of a feature in the selected signal(s). The presentation control circuit may be configured to allow for the selection of the signal(s) and the viewing mode, to determine a segment of each of the selected signal(s) for presentation according to the selected viewing mode, and to present the determined segment on the display screen.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: November 22, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Rosana Esteller
  • Publication number: 20220355112
    Abstract: A system may include a stimulator, sensing circuitry and a controller. The stimulator may be operably connected to at least one stimulation electrode, and configured to deliver an electrical waveform for an electrical therapy using the at least one stimulation electrode. The sensing circuitry may be operably connected to at least one sensing electrode, and configured to sense electrical potentials that are evoked by the electrical waveform to provide sensed evoked signals. The controller may be operably connected to the stimulator and the sensing circuitry. The controller may be configured to automatically define a sampling window, sample the sensed evoked potentials during the sampling window to provide sampled values, detect at least one feature from the sampled values, and automatically provide feedback for closed-loop control of the electrical therapy based on the at least one feature.
    Type: Application
    Filed: April 27, 2022
    Publication date: November 10, 2022
    Inventors: Philip Leonard Weiss, Rosana Esteller, Adarsh Jayakumar, Joshua Uyeda, Tianhe Zhang
  • Publication number: 20220346698
    Abstract: An example of a system for delivering neurostimulation to a patient and controlling the delivery of neurostimulation using sensors may include a stimulation output circuit, a sensing circuit, and a control circuit. The stimulation output circuit may be configured to deliver the neurostimulation. The sensing circuit may be configured to receive sensed signals from the sensors and to process the sensed signals. The sensing circuit has adjustable settings controlling the processing of the sensed signals. The control circuit may be configured to control the delivery of the neurostimulation using the processed sensed signals and to control the settings of the sensing circuit according to a sequence of sensing blocks each including a set of sensing parameters.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 3, 2022
    Inventors: Rosana Esteller, Rafael Carbunaru, Adarsh Jayakumar, Thien Tich Doan
  • Publication number: 20220347479
    Abstract: Methods, system, and computer-implementable algorithms are disclosed for determining time-varying pulses for a patient having an implantable stimulator device (ISD). At least one time-invariant tonic stimulation pulse parameter (e.g., amplitude, pulse width, or frequency) is modified by a modulation function to produce time-varying pulses (TVPs), and one or more measurements are taken to determine the effectiveness of the TVP. The measurements may be objective and taken from the patient, and/or subjective and determined based on feedback from the patient. In one example, objective measurements may comprise one or more features determined from an electrospinogram (ESG) signal detected by the ISD, which may include evoked compound action potentials The one or more measurements are used to determine a score for the TVP, which is useful in selecting a best TVP for use with the patient, or for adjusting the modulation function applied to the tonic stimulation parameters.
    Type: Application
    Filed: September 24, 2020
    Publication date: November 3, 2022
    Inventors: Rosana Esteller, Jessica Block, Changfang Zhu
  • Publication number: 20220339447
    Abstract: An example method for delivering neurostimulation energy may include performing a training procedure by delivering the neurostimulation energy to a neural target of the patient when the patient is at one or more postures. Electrical activity is sensed from the spinal cord, such as an electrospinogram (ESG). A relationship is determined between the sensed electrical activity and neurostimulation intensity that reduces influence of noise in the sensed electrical activity caused by dynamically changing posture of the patient using mathematical or statistical modeling of the extracted features. Stimulation parameters are modulated according to the determined relationship.
    Type: Application
    Filed: August 6, 2020
    Publication date: October 27, 2022
    Inventors: Andrew James Haddock, Rosana Esteller, Michael A. Moffitt
  • Publication number: 20220323764
    Abstract: In Spinal Cord Stimulation (SCS) systems having sensing capability, conventional wisdom seeks to minimize or avoid sensing of stimulation artifacts caused by the stimulation. Despite this, the present disclosure recognizes that stimulation artifacts in and of itself can include useful information relevant to operation of the SCS implant and/or the status of the patient. In particular, stimulation artifact features as sensed canbe used to determine a posture or activity of the patient, or more generally to adjust the stimulation program that the SCS implant is providing. Furthermore, sensing of stimulation artifact features can be as useful as, and possibly even more useful than, information gleaned from sensing neural responses to stimulation, such as Evoked Compound Action Potentials (ECAPs).
    Type: Application
    Filed: June 8, 2020
    Publication date: October 13, 2022
    Inventors: Rosana Esteller, Varol Burak Aydemir
  • Publication number: 20220323777
    Abstract: An example of a neurostimulation system may include a programming control circuit, a sensing circuit, and a stimulation control circuit. The programming control circuit may be configured to generate stimulation parameters controlling delivery of neurostimulation according to stimulation waveform(s) and stimulation field(s). The sensing circuit may be configured to sense signals. The stimulation control circuit may be configured to determine the stimulation waveform(s) and the stimulation field(s) based on a lead configuration and may be configured to determine first and second electrodes of respective first and second leads, receive first and second signals sensed using the first and second electrodes, detect corresponding signal features from the first and second signals, determine a feature delay between the detected signal features, and determine a need for adjusting the lead configuration using the feature delay. The signal features are associated with a response of the patient to the neurostimulation.
    Type: Application
    Filed: March 8, 2022
    Publication date: October 13, 2022
    Inventors: Tianhe Zhang, Changfang Zhu, Rosana Esteller
  • Publication number: 20220305269
    Abstract: System and methods are disclosed to automatically set or update physiological thresholds such as perception threshold (pth) and discomfort thresholds (dth) in an implantable stimulator system. The system monitors neural responses such as ECAPs resulting from stimulation provided to the patient. Extracted neural thresholds (ENTs) are determined, which can comprise a smallest stimulation amplitude at which a neural response can be reliably detected. A correlation between ENTs and physiological thresholds such as pth and dth is used to allow the physiological thresholds to be estimated and updated using the measured ENT values.
    Type: Application
    Filed: March 10, 2022
    Publication date: September 29, 2022
    Inventors: Rosana Esteller, Jonathan Larcom
  • Publication number: 20220305270
    Abstract: An example of a system for delivering neurostimulation energy may include a stimulation control circuit to control the delivery of the neurostimulation energy according to each of stimulation test patterns. The stimulation control circuit may include a sensing input configured to receive an electrospinogram (ESG) signal recording electrical activity from the spinal cord, a measurement circuit configured to determine one or more response parameters for each test pattern using the received ESG signal, and a selection circuit configured to select a neurostimulation therapy pattern from the stimulation test patterns based on the response parameter(s) and one or more selection criteria. The electrical activity includes responses to the delivered neurostimulation energy, and the response parameter(s) are each indicative of one or more characteristics of the responses. The selection may include selecting a type of stimulation waveform from multiple types of stimulation waveform in the stimulation test patterns.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Inventor: Rosana Esteller
  • Publication number: 20220300434
    Abstract: An implantable device includes a memory and a processor coupled to the memory and configured to perform actions, including: receiving electrical signals from tissue of a patient; and in response to each of a plurality of triggers, storing a portion of the received electrical signals, occurring after the trigger and extending for a limited duration, in the memory on a first-in-first-out basis. Another an implantable device includes a memory; and a processor coupled to the memory and configured to perform actions, including: receiving electrical signals from tissue of a patient; and in response to each of a plurality of triggers, determining at least one feature of the received electrical signals; and storing the at least one feature in the memory on a first-in-first-out basis.
    Type: Application
    Filed: July 24, 2020
    Publication date: September 22, 2022
    Inventor: Rosana Esteller
  • Publication number: 20220296892
    Abstract: Methods and systems are described for detecting if a stimulation lead implanted in a patient's brain has moved. Lead movement occurring between a first time and a second time may be determined by comparing features extracted from evoked potentials recorded at the two times. The disclosed methods and systems are particularly useful for determining if a stimulation lead has moved between the time it was implanted in the patient's brain and the time that stimulation parameters are being optimized. Lead movement during implantation, during parameter optimization, and during or between other lead optimization processes may be determined as well.
    Type: Application
    Filed: March 7, 2022
    Publication date: September 22, 2022
    Inventors: Rosana Esteller, Mahsa Malekmohammadi, Andrew Haddock, Tianhe Zhang
  • Publication number: 20220266027
    Abstract: Methods and systems for using sensed neural responses for informing aspects of stimulation therapy are disclosed. For example, features of evoked neural responses, such as evoked compound action potentials (ECAPs) can be used for closed-loop feedback control of stimulation parameters. Aspects of the disclosed methods and systems can differentiate between changes in the sensed neural responses that are caused by the environment at stimulating electrodes and changes in the neural responses that are caused by the environment at sensing electrodes. Embodiments determine changes in the morphology of the neural responses, which morphology changes indicate a degree of change in the stimulating environment. Algorithms and systems for assigning and tracking likelihoods for underlying electrode-tissue changes based on sensed neural responses are disclosed. The feedback control modality may be updated based on such likelihoods.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 25, 2022
    Inventors: Tianhe Zhang, Rosana Esteller, Andrew Haddock, Michael Moffitt
  • Publication number: 20220241593
    Abstract: Systems and methods for selectable lateral spinal cord stimulation are discussed. An exemplary neuromodulation system includes a programming device and an electrostimulator. The programming device can receive information about placement of at least one lead in a vicinity of a lateral portion of a spinal cord, identify one or more lateral spinal neural targets based on the information about placement of the at least one lead, and receive a user selection from selectable stimulation modes for stimulating the identified one or more lateral spinal neural targets. The electrostimulator can apply electrostimulation energy to the identified one or more lateral spinal neural targets via the at least one lead in accordance with the user selection from the selectable stimulation modes.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 4, 2022
    Inventors: Jessica Block, Rosana Esteller, Rafael Carbunaru
  • Publication number: 20220241582
    Abstract: A method is disclosed for programming a patient's stimulator device using an external device. The method provides a Graphical User Interface (GUI) on the external device that allows the patient to select from a plurality of displayed stimulation modes to program stimulation provided by one or more electrodes of the stimulator device. The external device stores a model derived for the patient, which model comprises information indicative of a plurality of frequency/pulse width/amplitude coordinates predicted to provide optimal stimulation for the patient. Each stimulation mode corresponds with a subset of coordinates defined in accordance with the plurality of coordinates in the model. Selection of one of the stimulation modes limits programming the stimulator device with coordinates that are within the corresponding subset of coordinates.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 4, 2022
    Inventors: Ismael Huertas Fernandez, Que T. Doan, Changfang Zhu, Rosana Esteller, Michael A. Moffitt
  • Patent number: 11383088
    Abstract: An example of a system for delivering neurostimulation energy may include a stimulation control circuit to control the delivery of the neurostimulation energy according to each of stimulation test patterns. The stimulation control circuit may include a sensing input configured to receive an electrospinogram (ESG) signal recording electrical activity from the spinal cord, a measurement circuit configured to determine one or more response parameters for each test pattern using the received ESG signal, and a selection circuit configured to select a neurostimulation therapy pattern from the stimulation test patterns based on the response parameter(s) and one or more selection criteria. The electrical activity includes responses to the delivered neurostimulation energy, and the response parameter(s) are each indicative of one or more characteristics of the responses. The selection may include selecting a type of stimulation waveform from multiple types of stimulation waveform in the stimulation test patterns.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: July 12, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Rosana Esteller
  • Publication number: 20220184399
    Abstract: Systems and methods for providing stimulation and neural response sensing in an implantable stimulation device are disclosed. A neural response database records baseline neural response information from one or more sensing electrodes for a given pole configuration that provides stimulation to a patient. The stimulation device can then take neural response measurements at the sensing electrode(s) and the system (possibly with the assistance of an external device in communication with the stimulation device) can compare the neural response measurements with the baselines. If they differ, as they might if the electrode array has moved in the patient's tissue, an algorithm can be used to move the position of the pole configuration in the electrode array to cause the neural response measurements to equal, or at least come closer to, the neural response baselines.
    Type: Application
    Filed: April 27, 2020
    Publication date: June 16, 2022
    Inventors: Tianhe Zhang, Rosana Esteller, Michael A. Moffitt, Joseph M. Bocek
  • Patent number: 11338141
    Abstract: Methods and systems for testing and treating spinal cord stimulation (SCS) patients are disclosed. Patients are eventually treated with sub-perception (paresthesia free) therapy. However, supra-perception stimulation is used during “sweet spot searching” during which active electrodes are selected for the patient. This allows sweet spot searching to occur much more quickly and without the need to wash in the various electrode combinations that are tried. After selecting electrodes using supra-perception therapy, therapy is titrated to sub-perception levels using the selected electrodes. Such sub-perception therapy has been investigated using pulses at or below 10 kHz, and it has been determined that a statistically significant correlation exists between pulse width (PW) and frequency (F) in this frequency range at which SCS patients experience significant reduction in symptoms such as back pain.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: May 24, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Jianwen Gu, Ismael Huertas Fernandez, Rosana Esteller, Michael A. Moffitt
  • Patent number: 11338127
    Abstract: A method is disclosed for programming a patient's stimulator device using an external device. The method provides a Graphical User Interface (GUI) on the external device that allows the patient to select from a plurality of displayed stimulation modes to program stimulation provided by one or more electrodes of the stimulator device. The external device stores a model derived for the patient, which model comprises information indicative of a plurality of frequency/pulse width/amplitude coordinates predicted to provide optimal stimulation for the patient. Each stimulation mode corresponds with a subset of coordinates defined in accordance with the plurality of coordinates in the model. Selection of one of the stimulation modes limits programming the stimulator device with coordinates that are within the corresponding subset of coordinates.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: May 24, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Ismael Huertas Fernandez, Que T. Doan, Changfang Zhu, Rosana Esteller, Michael A. Moffitt
  • Publication number: 20220134110
    Abstract: Methods and systems for providing neuromodulation therapy are disclosed. The methods and systems are configured to sense an evoked neural response and use the evoked neural response as feedback for providing neuromodulation therapy. Methods of reducing stimulation artifacts that obscure the sensed evoked neural response are disclosed. The methods of artifact reduction include recording a stimulation artifact in the absence of an evoked neural response, aligning and scaling the stimulation artifact with respect to the obscured signal, and subtracting the aligned and scaled artifact from the obscured signal.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Inventors: Rosana Esteller, Pranjali Borkar, Tianhe Zhang, Kiran K. Gururaj
  • Patent number: 11285323
    Abstract: Methods and systems for testing and treating spinal cord stimulation (SCS) patients are disclosed. Patients are eventually treated with sub-perception (paresthesia free) therapy. However, supra-perception stimulation is used during “sweet spot searching” during which active electrodes are selected for the patient. This allows sweet spot searching to occur much more quickly and without the need to wash in the various electrode combinations that are tried. After selecting electrodes using supra-perception therapy, therapy is titrated to sub-perception levels using the selected electrodes. Such sub-perception therapy has been investigated using pulses at or below 10 kHz, and it has been determined that a statistically significant correlation exists between pulse width (PW) and frequency (F) in this frequency range at which SCS patients experience significant reduction in symptoms such as back pain.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: March 29, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Jianwen Gu, Ismael Huertas Fernandez, Rosana Esteller, Michael A. Moffitt