Patents by Inventor Rossa Wai Kwun Chiu

Rossa Wai Kwun Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200010900
    Abstract: Embodiments of the present invention provide methods, systems, and apparatus for deducing the fetal DNA fraction in maternal plasma without using paternal or fetal genotypes. Maternal genotype information may be obtained from a maternal-only DNA sample or may be assumed from shallow-depth sequencing of a biological sample having both maternal and fetal DNA molecules. Because sequencing may be at shallow depths, a locus may have only few reads and may fail to exhibit a non-maternal allele even if a non-maternal allele is present. However, normalized parameters that characterize non-maternal alleles sequenced can be used to provide an accurate estimate of the fetal DNA fraction, even if the amount of non-maternal alleles is in error. Methods described herein may not need high-depth sequencing or enrichment of specific regions. As a result, these methods can be integrated into widely used non-invasive prenatal testing and other diagnostics.
    Type: Application
    Filed: September 18, 2019
    Publication date: January 9, 2020
    Inventors: Yuk-Ming Dennis Lo, Peiyong Jiang, Kwan Chee Chan, Rossa Wai Kwun Chiu
  • Publication number: 20200005897
    Abstract: Factors affecting the fragmentation pattern of cell-free DNA (e.g., plasma DNA) and the applications, including those in molecular diagnostics, of the analysis of cell-free DNA fragmentation patterns are described. Various applications can use a property of a fragmentation pattern to determine a proportional contribution of a particular tissue type, to determine a genotype of a particular tissue type (e.g., fetal tissue in a maternal sample or tumor tissue in a sample from a cancer patient), and/or to identify preferred ending positions for a particular tissue type, which may then be used to determine a proportional contribution of a particular tissue type.
    Type: Application
    Filed: September 10, 2019
    Publication date: January 2, 2020
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang
  • Publication number: 20200002770
    Abstract: Provided herein are methods and systems for identifying chimeric nucleic acid fragments, e.g., organism-pathogen chimeric nucleic acid fragments and chromosomal rearrangement chimeric nucleic acid fragments. Also provided herein are methods and systems relating to determining a pathogen integration profile or a chromosomal rearrangement in a biological sample and determining a classification of pathology based at least in part on a pathogen integration profile or a chromosomal rearrangement in a biological sample. In certain aspects of the present disclosure, cell-free nucleic acid molecules from a biological sample are analyzed.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 2, 2020
    Inventors: Yuk-Ming Dennis LO, Rossa Wai Kwun CHIU, Kwan Chee CHAN, Peiyong JIANG, Wai Kei LAM, Haiqiang ZHANG
  • Publication number: 20200005896
    Abstract: Factors affecting the fragmentation pattern of cell-free DNA (e.g., plasma DNA) and the applications, including those in molecular diagnostics, of the analysis of cell-free DNA fragmentation patterns are described. Various applications can use a property of a fragmentation pattern to determine a proportional contribution of a particular tissue type, to determine a genotype of a particular tissue type (e.g., fetal tissue in a maternal sample or tumor tissue in a sample from a cancer patient), and/or to identify preferred ending positions for a particular tissue type, which may then be used to determine a proportional contribution of a particular tissue type.
    Type: Application
    Filed: September 10, 2019
    Publication date: January 2, 2020
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang
  • Publication number: 20200005895
    Abstract: Factors affecting the fragmentation pattern of cell-free DNA (e.g., plasma DNA) and the applications, including those in molecular diagnostics, of the analysis of cell-free DNA fragmentation patterns are described. Various applications can use a property of a fragmentation pattern to determine a proportional contribution of a particular tissue type, to determine a genotype of a particular tissue type (e.g., fetal tissue in a maternal sample or tumor tissue in a sample from a cancer patient), and/or to identify preferred ending positions for a particular tissue type, which may then be used to determine a proportional contribution of a particular tissue type.
    Type: Application
    Filed: September 10, 2019
    Publication date: January 2, 2020
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang
  • Publication number: 20190390257
    Abstract: Provided herein are compositions comprising tissue-specific markers for identifying a tissue of origin of a cell-free nucleic acid, e.g., a cell-free DNA molecule. Also provided herein are methods, compositions, and systems for identifying a tissue of origin of a cell-free nucleic acid by determining an absolute amount of cell-free nucleic acids comprising the tissue-specific marker. Also provided herein are methods, compositions, and systems for detecting a cancer in a tissue of an organism by analyzing tissue-specific markers.
    Type: Application
    Filed: March 15, 2019
    Publication date: December 26, 2019
    Inventors: Yuk-Ming Dennis LO, Rossa Wai Kwun CHIU, Kwan Chee CHAN, Wanxia GAI, Lu Ji
  • Publication number: 20190341127
    Abstract: Various applications can use fragmentation patterns related of cell-free DNA, e.g., plasma DNA and serum DNA. For example, the end positions of DNA fragments can be used for various applications. The fragmentation patterns of short and long DNA molecules can be associated with different preferred DNA end positions, referred to as size-tagged preferred ends. In another example, the fragmentation patterns relating to tissue-specific open chromatin regions were analyzed. A classification of a proportional contribution of a particular tissue type can be determined in a mixture of cell-free DNA from different tissue types. Additionally, a property of a particular tissue type can be determined, e.g., whether a sequence imbalance exists in a particular region for a tissue type or whether a pathology exists for the tissue type.
    Type: Application
    Filed: May 3, 2019
    Publication date: November 7, 2019
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Kun Sun
  • Patent number: 10457990
    Abstract: Embodiments of the present invention provide methods, systems, and apparatus for deducing the fetal DNA fraction in maternal plasma without using paternal or fetal genotypes. Maternal genotype information may be obtained from a maternal-only DNA sample or may be assumed from shallow-depth sequencing of a biological sample having both maternal and fetal DNA molecules. Because sequencing may be at shallow depths, a locus may have only few reads and may fail to exhibit a non-maternal allele even if a non-maternal allele is present. However, normalized parameters that characterize non-maternal alleles sequenced can be used to provide an accurate estimate of the fetal DNA fraction, even if the amount of non-maternal alleles is in error. Methods described herein may not need high-depth sequencing or enrichment of specific regions. As a result, these methods can be integrated into widely used non-invasive prenatal testing and other diagnostics.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: October 29, 2019
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Peiyong Jiang, Kwan Chee Chan, Rossa Wai Kwun Chiu
  • Patent number: 10453556
    Abstract: Factors affecting the fragmentation pattern of cell-free DNA (e.g., plasma DNA) and the applications, including those in molecular diagnostics, of the analysis of cell-free DNA fragmentation patterns are described. Various applications can use a property of a fragmentation pattern to determine a proportional contribution of a particular tissue type, to determine a genotype of a particular tissue type (e.g., fetal tissue in a maternal sample or tumor tissue in a sample from a cancer patient), and/or to identify preferred ending positions for a particular tissue type, which may then be used to determine a proportional contribution of a particular tissue type.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: October 22, 2019
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang
  • Publication number: 20190292607
    Abstract: Analysis of tumor-derived circulating cell-free DNA opens up new possibilities for performing liquid biopsies for solid tumor assessment or cancer screening. However, many aspects of the biological characteristics of tumor-derived cell-free DNA remain unclear. Regarding the size profile of plasma DNA molecules, some studies reported increased integrity of tumor-derived plasma DNA while others reported shorter tumor-derived plasma DNA molecules. We performed an analysis of the size profiles of plasma DNA in patients with cancer using massively parallel sequencing at single base resolution and in a genomewide manner. Tumor-derived plasma DNA molecules were further identified using chromosome arm-level z-score analysis (CAZA). We showed that populations of aberrantly short and long DNA molecules co-existed in the plasma of patients with cancer. The short ones preferentially carried the tumor-associated copy number aberrations. These results show the ability to use plasma DNA as a molecular diagnostic tool.
    Type: Application
    Filed: June 13, 2019
    Publication date: September 26, 2019
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang
  • Publication number: 20190264291
    Abstract: A frequency of somatic mutations in a biological sample (e.g., plasma or serum) of a subject undergoing screening or monitoring for cancer, can be compared with that in the constitutional DNA of the same subject. A parameter can derived from these frequencies and used to determine a classification of a level of cancer. False positives can be filtered out by requiring any variant locus to have at least a specified number of variant sequence reads (tags), thereby providing a more accurate parameter. The relative frequencies for different variant loci can be analyzed to determine a level of heterogeneity of tumors in a patient.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kawn Chee Chan, Peiyong Jiang
  • Patent number: 10392666
    Abstract: Systems, methods, and apparatuses can determine and use methylation profiles of various tissues and samples. Examples are provided. A methylation profile can be deduced for fetal/tumor tissue based on a comparison of plasma methylation (or other sample with cell-free DNA) to a methylation profile of the mother/patient. A methylation profile can be determined for fetal/tumor tissue using tissue-specific alleles to identify DNA from the fetus/tumor when the sample has a mixture of DNA. A methylation profile can be used to determine copy number variations in genome of a fetus/tumor. Methylation markers for a fetus have been identified via various techniques. The methylation profile can be determined by determining a size parameter of a size distribution of DNA fragments, where reference values for the size parameter can be used to determine methylation levels. Additionally, a methylation level can be used to determine a level of cancer.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: August 27, 2019
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Miu Fan Lun, Wai Man Chan, Peiyong Jiang
  • Publication number: 20190244679
    Abstract: An aberration in a fetal genome can be identified by analyzing a sample of fetal and maternal DNA. Classifications of whether an aberration (amplification or deletion) exists in a subchromosomal region are determined using count-based and size-based methods. The count classification and the size classification can be used in combination to determine whether only the fetus or only the mother, or both, have the aberration in the subchromosomal region, thereby avoiding false positives when the mother has the aberration and the fetus does not.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Cheuk Yin Jandy Yu
  • Publication number: 20190241979
    Abstract: Systems, methods, and apparatuses can determine and use methylation profiles of various tissues and samples. Examples are provided. A methylation profile can be deduced for fetal/tumor tissue based on a comparison of plasma methylation (or other sample with cell-free DNA) to a methylation profile of the mother/patient. A methylation profile can be determined for fetal/tumor tissue using tissue-specific alleles to identify DNA from the fetus/tumor when the sample has a mixture of DNA. A methylation profile can be used to determine copy number variations in genome of a fetus/tumor. Methylation markers for a fetus have been identified via various techniques. The methylation profile can be determined by determining a size parameter of a size distribution of DNA fragments, where reference values for the size parameter can be used to determine methylation levels. Additionally, a methylation level can be used to determine a level of cancer.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Miu Fan Lun, Wai Man Chan, Peiyong Jiang
  • Patent number: 10364467
    Abstract: Analysis of tumor-derived circulating cell-free DNA opens up new possibilities for performing liquid biopsies for solid tumor assessment or cancer screening. However, many aspects of the biological characteristics of tumor-derived cell-free DNA remain unclear. Regarding the size profile of plasma DNA molecules, some studies reported increased integrity of tumor-derived plasma DNA while others reported shorter tumor-derived plasma DNA molecules. We performed an analysis of the size profiles of plasma DNA in patients with cancer using massively parallel sequencing at single base resolution and in a genomewide manner. Tumor-derived plasma DNA molecules were further identified using chromosome arm-level z-score analysis (CAZA). We showed that populations of aberrantly short and long DNA molecules co-existed in the plasma of patients with cancer. The short ones preferentially carried the tumor-associated copy number aberrations. These results show the ability to use plasma DNA as a molecular diagnostic tool.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: July 30, 2019
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang
  • Publication number: 20190218615
    Abstract: Methods are provided for diagnosing pregnancy-associated disorders, determining allelic ratios, determining maternal or fetal contributions to circulating transcripts, and/or identifying maternal or fetal markers using a sample from a pregnant female subject. Also provided is use of a gene for diagnosing a pregnancy-associated disorder in a pregnant female subject.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 18, 2019
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Bo Yin Tsui
  • Patent number: 10319463
    Abstract: An aberration in a fetal genome can be identified by analyzing a sample of fetal and maternal DNA. Classifications of whether an aberration (amplification or deletion) exists in a subchromosomal region are determined using count-based and size-based methods. The count classification and the size classification can be used in combination to determine whether only the fetus or only the mother, or both, have the aberration in the subchromosomal region, thereby avoiding false positives when the mother has the aberration and the fetus does not.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: June 11, 2019
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Cheuk Yin Jandy Yu
  • Publication number: 20190153541
    Abstract: Embodiments are related to the accurate detection of somatic mutations in the plasma (or other samples containing cell-free DNA) of cancer patients and for subjects being screened for cancer. The detection of these molecular markers would be useful for the screening, detection, monitoring, management, and prognostication of cancer patients. For example, a mutational load can be determined from the identified somatic mutations, and the mutational load can be used to screen for any or various types of cancers, where no prior knowledge about a tumor or possible cancer of the subject may be required. Embodiments can be useful for guiding the use of therapies (e.g. targeted therapy, immunotherapy, genome editing, surgery, chemotherapy, embolization therapy, anti-angiogenesis therapy) for cancers. Embodiments are also directed to identifying de novo mutations in a fetus by analyzing a maternal sample having cell-free DNA from the fetus.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang
  • Publication number: 20190136323
    Abstract: Methods, systems, and apparatus are provided for determining whether a nucleic acid sequence imbalance exists within a biological sample. One or more cutoff values for determining an imbalance of, for example, the ratio of the two sequences (or sets of sequences) are chosen. The cutoff value may be determined based at least in part on the percentage of fetal DNA in a sample, such as maternal plasma, containing a background of maternal nucleic acid sequences. The percentage of fetal DNA can be calculated from the same or different data used to determine the cutoff value, and can use a locus where the mother is homozygous and the fetus is heterozygous. The cutoff value may be determined using many different types of methods, such as sequential probability ratio testing (SPRT).
    Type: Application
    Filed: January 11, 2019
    Publication date: May 9, 2019
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Benny Chung Ying Zee, Ka Chun Chong
  • Publication number: 20190130065
    Abstract: Size-band analysis is used to determine whether a chromosomal region exhibits a copy number aberration or an epigenetic alteration. Multiple size ranges may be analyzed instead of focusing on specific sizes. By using multiple size ranges instead of specific sizes, methods may analyze more sequence reads and may be able to determine whether a chromosomal region exhibits a copy number aberration even when clinically-relevant DNA may be a low fraction of the biological sample. Using multiple ranges may allow for the use of all sequence reads from a genomic region, rather than a selected subset of reads in the genomic region. The accuracy of analysis may be increased with higher sensitivity at similar or higher specificity. Analysis may include fewer sequencing reads to achieve the same accuracy, resulting in a more efficient process.
    Type: Application
    Filed: November 1, 2018
    Publication date: May 2, 2019
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang