Patents by Inventor Rostislav R. Khrapko

Rostislav R. Khrapko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8798412
    Abstract: Disclosed is an optical fiber having a core with an alkali metal oxide dopant in an peak amount greater than about 0.002 wt. % and less than about 0.1 wt. %. The alkali metal oxide concentration varies with a radius of the optical fiber. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained. Also disclosed are several methods of making the optical fiber including the steps of forming an alkali metal oxide-doped rod, and adding additional glass to form a draw perform. Preferably, the draw preform has a final outer dimension (d2), wherein an outer dimension (d1) of the rod is less than or equal to 0.06 times the final outer dimension (d2). In a preferred embodiment, the alkali metal oxide-doped rod is inserted into the centerline hole of a preform to form an assembly.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: August 5, 2014
    Assignee: Corning Incorporated
    Inventors: Dana C. Bookbinder, Lisa C. Chacon, Adam J. G. Ellison, Rostislav R. Khrapko, Stephan L. Logunov, Michael T. Murtagh, Sabyasachi Sen
  • Patent number: 7524780
    Abstract: A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: April 28, 2009
    Assignee: Corning Incorporated
    Inventors: Laura J. Ball, Bruno P. M. Baney, Dana C. Bookbinder, Keith L. House, Rostislav R. Khrapko, Lisa A. Moore, Susan L. Schiefelbein
  • Patent number: 7469559
    Abstract: A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: December 30, 2008
    Assignee: Corning Incorporated
    Inventors: Laura J Ball, Bruno P M Baney, Dana C Bookbinder, Keith L House, Rostislav R Khrapko, Susan L Schiefelbein, Lisa A Moore
  • Patent number: 6760526
    Abstract: The present invention relates to a glass article for use as an optical waveguide fiber and more particularly to an optical waveguide fiber, the core of which is doped with a chalcogenide element to significantly increase the refractive index of the core. The subject of this invention is novel doped silica core compositions wherein a portion of the oxygen in the silica is replaced with either sulfur, selenium or tellurium using plasma enhanced chemical vapor deposition (PECVD). These compositions are designed to have higher refractive indices than silica, low coefficients of expansion, high optical transparency, and appropriate viscosity and softening points to make them ideal candidates for use as optical waveguide fibers.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: July 6, 2004
    Assignee: Corning Incorporated
    Inventors: Adam J. G. Ellison, Rostislav R. Khrapko
  • Publication number: 20040057692
    Abstract: A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.
    Type: Application
    Filed: August 28, 2002
    Publication date: March 25, 2004
    Inventors: Laura J. Ball, Bruno P. M. Baney, Dana C. Bookbinder, Keith L. House, Rostislav R. Khrapko, Susan L. Schiefelbein
  • Publication number: 20030161598
    Abstract: The present invention relates to a glass article for use as an optical waveguide fiber and more particularly to an optical waveguide fiber, the core of which is doped with a chalcogenide element to significantly increase the refractive index of the core. The subject of this invention is novel doped silica core compositions wherein a portion of the oxygen in the silica is replaced with either sulfur, selenium or tellurium using plasma enhanced chemical vapor deposition (PECVD). These compositions are designed to have higher refractive indices than silica, low coefficients of expansion, high optical transparency, and appropriate viscosity and softening points to make them ideal candidates for use as optical waveguide fibers.
    Type: Application
    Filed: February 4, 2003
    Publication date: August 28, 2003
    Inventors: Adam J.G. Ellison, Rostislav R. Khrapko
  • Patent number: 6542690
    Abstract: The present invention relates to a glass article for use as an optical waveguide fiber and more particularly to an optical waveguide fiber, the core of which is doped with a chalcogenide element to significantly increase the refractive index of the core. The subject of this invention is novel doped silica core compositions wherein a portion of the oxygen in the silica is replaced with either sulfur, selenium or tellurium using plasma enhanced chemical vapor deposition (PECVD). These compositions are designed to have higher refractive indices than silica, low coefficients of expansion, high optical transparency, and appropriate viscosity and softening points to make them ideal candidates for use as optical waveguide fibers.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: April 1, 2003
    Assignee: Corning Incorporated
    Inventors: Adam J. G. Ellison, Rostislav R. Khrapko