Patents by Inventor Ru-Yin Tong

Ru-Yin Tong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8673654
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the ?-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: March 18, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Liubo Hong, Cheng Horng, Mao-Min Chen, Ru-Yin Tong
  • Patent number: 7999360
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer of NiCr, NiFe, or NiFeCr layer on the oc-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: August 16, 2011
    Assignees: Headway Technologies, Inc., MagIC Technologies, Inc.
    Inventors: Liubo Hong, Cheng Horng, Mao-Min Chen, Ru-Yin Tong
  • Publication number: 20100047929
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the ?-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Application
    Filed: October 23, 2009
    Publication date: February 25, 2010
    Inventors: Liubo Hong, Cheng Horng, Mao-Min Chen, Ru-Yin Tong
  • Publication number: 20100044680
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the ?-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Application
    Filed: October 23, 2009
    Publication date: February 25, 2010
    Inventors: LIUBO HONG, Cheng Horng, Mao-Min Chen, Ru-Yin Tong
  • Patent number: 7611912
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the ?-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: November 3, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Liubo Hong, Cheng Horng, Mao-Min Chen, Ru-Yin Tong
  • Publication number: 20060002184
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the ?-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Inventors: Liubo Hong, Cheng Horng, Mao-Min Chen, Ru-Yin Tong