Patents by Inventor Ru-Ying Tong

Ru-Ying Tong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11956971
    Abstract: A fabrication process for an STT MTJ MRAM device includes steps of cooling the device at individual or at multiple stages in its fabrication. The cooling process, which may be equally well applied during the fabrication of other multi-layered devices, is demonstrated to produce an operational device that is more resistant to adverse thermal effects during operation that would normally cause a similar device not so fabricated to lose stored data and otherwise fail to operate properly.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Huanlong Liu, Guenole Jan, Ru-Ying Tong, Jian Zhu, Yuan-Jen Lee, Jodi Mari Iwata, Sahil Patel, Vignesh Sundar
  • Patent number: 11930716
    Abstract: A ferromagnetic layer is capped with a metallic oxide (or nitride) layer that provides a perpendicular-to-plane magnetic anisotropy to the layer. The surface of the ferromagnetic layer is treated with a plasma to prevent diffusion of oxygen (or nitrogen) into the layer interior. An exemplary metallic oxide layer is formed as a layer of metallic Mg that is plasma treated to reduce its grain size and enhance the diffusivity of oxygen into its interior. Then the plasma treated Mg layer is naturally oxidized and, optionally, is again plasma treated to reduce its thickness and remove the oxygen rich upper surface.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: March 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Guenole Jan, Ru-Ying Tong
  • Patent number: 11930717
    Abstract: A synthetic antiferromagnetic structure for a spintronic device is disclosed and has an FL2/Co or Co alloy/antiferromagnetic coupling/Co or Co alloy/CoFeB configuration where FL2 is a ferromagnetic free layer with intrinsic PMA. Antiferromagnetic coupling is improved by inserting a Co or Co alloy dusting layer on top and bottom surfaces of the antiferromagnetic coupling layer. The FL2 layer may be a L10 ordered alloy, a rare earth-transition metal alloy, or an (A1/A2)n laminate where A1 is one of Co, CoFe, or an alloy thereof, and A2 is one of Pt, Pd, Rh, Ru, Ir, Mg, Mo, Os, Si, V, Ni, NiCo, and NiFe, or A1 is Fe and A2 is V. A method is also provided for forming the synthetic antiferromagnetic structure.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: March 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Robert Beach, Guenole Jan, Yu-Jen Wang, Ru-Ying Tong
  • Patent number: 11849646
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein first and second interfaces of a free layer (FL) with a first metal oxide (Hk enhancing layer) and second metal oxide (tunnel barrier), respectively, produce perpendicular magnetic anisotropy (PMA) to increase thermal stability. In some embodiments, a capping layer that is a conductive metal nitride such as MoN contacts an opposite surface of the Hk enhancing layer with respect to the first interface to reduce interdiffusion of oxygen and nitrogen compared with a TiN capping layer and maintain an acceptable resistance×area (RA) product. In other embodiments, the capping layer may comprise an insulating nitride such as AlN that is alloyed with a conductive metal to minimize RA. Furthermore, a metallic buffer layer may be inserted between the capping layer and Hk enhancing layer. As a result, electrical shorts are reduced and the magnetoresistive ratio is increased.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jodi Mari Iwata, Guenole Jan, Ru-Ying Tong, Vignesh Sundar, Jian Zhu, Huanlong Liu
  • Publication number: 20230371395
    Abstract: A magnetic device for magnetic random access memory (MRAM), spin torque MRAM, or spin torque oscillator technology is disclosed wherein a magnetic tunnel junction (MTJ) with a sidewall is formed between a bottom electrode and a top electrode. A passivation layer that is a single layer or multilayer comprising one of B, C, or Ge, or an alloy thereof wherein the B, C, and Ge content, respectively, is at least 10 atomic % is formed on the MTJ sidewall to protect the MTJ from reactive species during subsequent processing including deposition of a dielectric layer that electrically isolates the MTJ from adjacent MTJs, and during annealing steps around 400° C. in CMOS fabrication. The single layer is about 3 to 10 Angstroms thick and may be an oxide or nitride of B, C, or Ge. The passivation layer is preferably amorphous to prevent diffusion of reactive oxygen or nitrogen species.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 16, 2023
    Inventors: Jodi Mari Iwata, Guenole Jan, Ru-Ying Tong
  • Patent number: 11758820
    Abstract: A magnetic device for magnetic random access memory (MRAM), spin torque MRAM, or spin torque oscillator technology is disclosed wherein a magnetic tunnel junction (MTJ) with a sidewall is formed between a bottom electrode and a top electrode. A passivation layer that is a single layer or multilayer comprising one of B, C, or Ge, or an alloy thereof wherein the B, C, and Ge content, respectively, is at least 10 atomic % is formed on the MTJ sidewall to protect the MTJ from reactive species during subsequent processing including deposition of a dielectric layer that electrically isolates the MTJ from adjacent MTJs, and during annealing steps around 400° C. in CMOS fabrication. The single layer is about 3 to 10 Angstroms thick and may be an oxide or nitride of B, C, or Ge. The passivation layer is preferably amorphous to prevent diffusion of reactive oxygen or nitrogen species.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jodi Mari Iwata, Guenole Jan, Ru-Ying Tong
  • Patent number: 11696511
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein a free layer (FL) interfaces with a first metal oxide (Mox) layer and second metal oxide (tunnel barrier) to produce perpendicular magnetic anisotropy (PMA) in the FL. In some embodiments, conductive metal channels made of a noble metal are formed in the Mox that is MgO to reduce parasitic resistance. In a second embodiment, a discontinuous MgO layer with a plurality of islands is formed as the Mox layer and a non-magnetic hard mask layer is deposited to fill spaces between adjacent islands and form shorting pathways through the Mox. In another embodiment, end portions between the sides of a center Mox portion and the MTJ sidewall are reduced to form shorting pathways by depositing a reducing metal layer on Mox sidewalls, or performing a reduction process with forming gas, H2, or a reducing species.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: July 4, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sahil Patel, Guenole Jan, Ru-Ying Tong, Vignesh Sundar, Dongna Shen, Yu-Jen Wang, Po-Kang Wang, Huanlong Liu
  • Patent number: 11683994
    Abstract: A perpendicular magnetic tunnel junction is disclosed wherein a metal insertion (MIS) layer is formed within a free layer (FL), a partially oxidized Hk enhancing layer is on the FL, and a nitride capping layer having a buffer layer/nitride layer (NL) is on the Hk enhancing layer to provide an improved coercivity (Hc)/switching current (Jc) ratio for spintronic applications. Magnetoresistive ratio is maintained above 100%, resistance×area (RA) product is below 5 ohm/?m2, and thermal stability to 400° C. is realized. The FL comprises two or more sub-layers, and the MIS layer may be formed within at least one sub-layer or between sub-layers. The buffer layer is used to prevent oxygen diffusion to the NL, and nitrogen diffusion from the NL to the FL. FL thickness is from 11 Angstroms to 25 Angstroms while MIS layer thickness is preferably from 0.5 Angstroms to 4 Angstroms.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: June 20, 2023
    Assignee: Headway Technologies, Inc.
    Inventors: Santiago Serrano Guisan, Luc Thomas, Jodi Mari Iwata, Guenole Jan, Ru-Ying Tong
  • Patent number: 11672182
    Abstract: A magnetic element is disclosed wherein a composite seed layer such as TaN/Mg enhances perpendicular magnetic anisotropy (PMA) in an overlying magnetic layer that may be a reference layer, free layer, or dipole layer. The first seed layer is selected from one or more of Ta, Zr, Nb, TaN, ZrN, NbN, and Ru. The second seed layer is selected from one or more of Mg, Sr, Ti, Al, V, Hf, B, and Si. A growth promoting layer made of NiCr or an alloy thereof is inserted between the seed layer and magnetic layer. In some embodiments, a first composite seed layer/NiCr stack is formed below the reference layer, and a second composite seed layer/NiCr stack is formed between the free layer and a dipole layer. The magnetic element has thermal stability to at least 400° C.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Guenole Jan, Ru-Ying Tong
  • Patent number: 11569441
    Abstract: A magnetic tunnel junction with perpendicular magnetic anisotropy (PMA MTJ) is disclosed wherein a free layer interfaces with a tunnel barrier and has a second interface with an oxide layer. A lattice-matching layer adjoins an opposite side of the oxide layer with respect to the free layer and is comprised of CoXFeYNiZLWMV or an oxide or nitride of Ru, Ta, Ti, or Si, wherein L is one of B, Zr, Nb, Hf, Mo, Cu, Cr, Mg, Ta, Ti, Au, Ag, or P, and M is one of Mo, Mg, Ta, Cr, W, or V, (x+y+z+w+v)=100 atomic %, x+y>0, and each of v and w are >0. The lattice-matching layer grows a BCC structure during annealing thereby promoting BCC structure growth in the oxide layer that results in enhanced free layer PMA and improved thermal stability.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: January 31, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Huanlong Liu, Yuan-Jen Lee, Jian Zhu, Guenole Jan, Luc Thomas, Po-Kang Wang, Ru-Ying Tong, Jodi Iwata
  • Patent number: 11563170
    Abstract: A laminated seed layer stack with a smooth top surface having a peak to peak roughness of 0.5 nm is formed by sequentially sputter depositing a first seed layer, a first amorphous layer, a second seed layer, and a second amorphous layer where each seed layer may be Mg and has a resputtering rate 2 to 30X that of the amorphous layers that are TaN, SiN, or a CoFeM alloy. A template layer that is NiCr or NiFeCr is formed on the second amorphous layer. As a result, perpendicular magnetic anisotropy in an overlying magnetic layer that is a reference layer, free layer, or dipole layer is substantially maintained during high temperature processing up to 400° C. and is advantageous for magnetic tunnel junctions in embedded MRAMs, spintronic devices, or in read head sensors. The laminated seed layer stack may include a bottommost Ta or TaN buffer layer.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: January 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jian Zhu, Guenole Jan, Yuan-Jen Lee, Huanlong Liu, Ru-Ying Tong, Po-Kang Wang
  • Publication number: 20220384718
    Abstract: A plasma enhanced chemical vapor deposition (PECVD) method is disclosed for forming a SiON encapsulation layer on a magnetic tunnel junction (MTJ) sidewall that minimizes attack on the MTJ sidewall during the PECVD or subsequent processes. The PECVD method provides a higher magnetoresistive ratio for the MTJ than conventional methods after a 400° C. anneal. In one embodiment, the SiON encapsulation layer is deposited using a N2O:silane flow rate ratio of at least 1:1 but less than 15:1. A N2O plasma treatment may be performed immediately following the PECVD to ensure there is no residual silane in the SiON encapsulation layer. In another embodiment, a first (lower) SiON sub-layer has a greater Si content than a second (upper) SiON sub-layer. A second encapsulation layer is formed on the SiON encapsulation layer so that the encapsulation layers completely fill the gaps between adjacent MTJs.
    Type: Application
    Filed: July 27, 2022
    Publication date: December 1, 2022
    Inventors: Vignesh Sundar, Yu-Jen Wang, Dongna Shen, Sahil Patel, Ru-Ying Tong
  • Publication number: 20220384716
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein first and second interfaces of a free layer (FL) with a first metal oxide (Hk enhancing layer) and second metal oxide (tunnel barrier), respectively, produce perpendicular magnetic anisotropy (PMA) to increase thermal stability. In some embodiments, a capping layer that is a conductive metal nitride such as MoN contacts an opposite surface of the Hk enhancing layer with respect to the first interface to reduce interdiffusion of oxygen and nitrogen compared with a TiN capping layer and maintain an acceptable resistance x area (RA) product. In other embodiments, the capping layer may comprise an insulating nitride such as AlN that is alloyed with a conductive metal to minimize RA. Furthermore, a metallic buffer layer may be inserted between the capping layer and Hk enhancing layer. As a result, electrical shorts are reduced and the magnetoresistive ratio is increased.
    Type: Application
    Filed: July 26, 2022
    Publication date: December 1, 2022
    Inventors: Jodi Mari Iwata, Guenole Jan, Ru-Ying Tong, Vignesh Sundar, Jian Zhu, Huanlong Liu
  • Patent number: 11417835
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein first and second interfaces of a free layer (FL) with a first metal oxide (Hk enhancing layer) and second metal oxide (tunnel barrier), respectively, produce perpendicular magnetic anisotropy (PMA) to increase thermal stability. In some embodiments, a capping layer that is a conductive metal nitride such as MoN contacts an opposite surface of the Hk enhancing layer with respect to the first interface to reduce interdiffusion of oxygen and nitrogen compared with a TiN capping layer and maintain an acceptable resistance x area (RA) product. In other embodiments, the capping layer may comprise an insulating nitride such as AlN that is alloyed with a conductive metal to minimize RA. Furthermore, a metallic buffer layer may be inserted between the capping layer and Hk enhancing layer. As a result, electrical shorts are reduced and the magnetoresistive ratio is increased.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: August 16, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jodi Mari Iwata, Guenole Jan, Ru-Ying Tong, Vignesh Sundar, Jian Zhu, Huanlong Liu
  • Patent number: 11411174
    Abstract: A plasma enhanced chemical vapor deposition (PECVD) method is disclosed for forming a SiON encapsulation layer on a magnetic tunnel junction (MTJ) sidewall that minimizes attack on the MTJ sidewall during the PECVD or subsequent processes. The PECVD method provides a higher magnetoresistive ratio for the MTJ than conventional methods after a 400° C. anneal. In one embodiment, the SiON encapsulation layer is deposited using a N2O:silane flow rate ratio of at least 1:1 but less than 15:1. A N2O plasma treatment may be performed immediately following the PECVD to ensure there is no residual silane in the SiON encapsulation layer. In another embodiment, a first (lower) SiON sub-layer has a greater Si content than a second (upper) SiON sub-layer. A second encapsulation layer is formed on the SiON encapsulation layer so that the encapsulation layers completely fill the gaps between adjacent MTJs.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: August 9, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Vignesh Sundar, Yu-Jen Wang, Dongna Shen, Sahil Patel, Ru-Ying Tong
  • Publication number: 20220246841
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein a free layer (FL) interfaces with a metal oxide (Mox) layer and a tunnel barrier layer to produce interfacial perpendicular magnetic anisotropy (PMA). The Mox layer has a non-stoichiometric oxidation state to minimize parasitic resistance, and comprises a dopant to fill vacant lattice sites thereby blocking oxygen diffusion through the Mox layer to preserve interfacial PMA and high thermal stability at process temperatures up to 400° C. Various methods of forming the doped Mox layer include deposition of the M layer in a reactive environment of 02 and dopant species in gas form, exposing a metal oxide layer to dopant species in gas form, and ion implanting the dopant. In another embodiment, where the dopant is N, a metal nitride layer is formed on a metal oxide layer, and then an anneal step drives nitrogen into vacant sites in the metal oxide lattice.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 4, 2022
    Inventors: Guenole Jan, Jodi Mari Iwata, Ru-Ying Tong, Huanlong Liu, Yuan-Jen Lee, Jian Zhu
  • Publication number: 20220149272
    Abstract: A perpendicular magnetic tunnel junction is disclosed wherein a metal insertion (MIS) layer is formed within a free layer (FL), a partially oxidized Hk enhancing layer is on the FL, and a nitride capping layer having a buffer layer/nitride layer (NL) is on the Hk enhancing layer to provide an improved coercivity (Hc)/switching current (Jc) ratio for spintronic applications. Magnetoresistive ratio is maintained above 100%, resistance×area (RA) product is below 5 ohm/?m2, and thermal stability to 400° C. is realized. The FL comprises two or more sub-layers, and the MIS layer may be formed within at least one sub-layer or between sub-layers. The buffer layer is used to prevent oxygen diffusion to the NL, and nitrogen diffusion from the NL to the FL. FL thickness is from 11 Angstroms to 25 Angstroms while MIS layer thickness is preferably from 0.5 Angstroms to 4 Angstroms.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 12, 2022
    Inventors: Santiago Serrano Guisan, Luc Thomas, Jodi Mari Iwata, Guenole Jan, Ru-Ying Tong
  • Patent number: 11316098
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein a free layer (FL) interfaces with a metal oxide (Mox) layer and a tunnel barrier layer to produce interfacial perpendicular magnetic anisotropy (PMA). The Mox layer has a non-stoichiometric oxidation state to minimize parasitic resistance, and comprises a dopant to fill vacant lattice sites thereby blocking oxygen diffusion through the Mox layer to preserve interfacial PMA and high thermal stability at process temperatures up to 400° C. Various methods of forming the doped Mox layer include deposition of the M layer in a reactive environment of O2 and dopant species in gas form, exposing a metal oxide layer to dopant species in gas form, and ion implanting the dopant. In another embodiment, where the dopant is N, a metal nitride layer is formed on a metal oxide layer, and then an anneal step drives nitrogen into vacant sites in the metal oxide lattice.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: April 26, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Guenole Jan, Jodi Mari Iwata, Ru-Ying Tong, Huanlong Lui, Yuan-Jen Lee, Jian Zhu
  • Patent number: 11316103
    Abstract: A process flow for forming magnetic tunnel junction (MTJ) nanopillars with minimal sidewall residue and minimal sidewall damage is disclosed wherein a pattern is first formed in a hard mask that is an uppermost MTJ layer. Thereafter, the hard mask sidewall is etch transferred through the remaining MTJ layers including a reference layer, free layer, and tunnel barrier between the free layer and reference layer. The etch transfer may be completed in a single RIE step that features a physical component involving inert gas ions or plasma, and a chemical component comprised of ions or plasma generated from one or more of methanol, ethanol, ammonia, and CO. In other embodiments, a chemical treatment with one of the aforementioned chemicals, and a volatilization at 50° C. to 450° C. may follow an etch transfer through the MTJ stack with an ion beam etch or plasma etch involving inert gas ions.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: April 26, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Dongna Shen, Yu-Jen Wang, Ru-Ying Tong, Vignesh Sundar, Sahil Patel
  • Patent number: 11289645
    Abstract: A complementary metal oxide semiconductor (CMOS) device comprises a first metal line, a first metal via on the first metal line, a magnetic tunneling junction (MTJ) device on the first metal via wherein the first metal via acts as a bottom electrode for the MTJ device, a second metal via on the MTJ device, and a second metal line on the second metal via.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: March 29, 2022
    Assignee: Headway Technologies, Inc.
    Inventors: Yi Yang, Vignesh Sundar, Dongna Shen, Sahil Patel, Ru-Ying Tong, Yu-Jen Wang