Patents by Inventor RUBEN AUER

RUBEN AUER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11454555
    Abstract: In a particular embodiment, a force sensor apparatus is disclosed that includes a force-compliant element that deforms in response to forces applied to the force sensor apparatus. The apparatus also includes a sensing element coupled to the force-compliant element and is configured to generate a signal indicating the degree that the force-compliant element deforms in response to the applications of forces to the force sensor apparatus. In this embodiment, the apparatus also includes a printed circuit board configured to receive the signal from the sensing element and a support structure having a surface on which the printed circuit board is coupled. The support structure has an outer rim that is attached to the force-compliant element. The apparatus also includes a sensor housing that covers the printed circuit board. The sensor housing has an outer rim attached to the force-compliant element.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: September 27, 2022
    Assignee: SENSATA TECHNOLOGIES, INC.
    Inventors: Laurens C. Fortgens, Jan-Willem Sloetjes, Edwin Vonk, Ruben Auer, Thomas Gerjen Hendrik Kouwen, Cristobal Ruiz Zwollo
  • Publication number: 20210223120
    Abstract: In a particular embodiment, a force sensor apparatus is disclosed that includes a force-compliant element that deforms in response to forces applied to the force sensor apparatus. The apparatus also includes a sensing element coupled to the force-compliant element and is configured to generate a signal indicating the degree that the force-compliant element deforms in response to the applications of forces to the force sensor apparatus. In this embodiment, the apparatus also includes a printed circuit board configured to receive the signal from the sensing element and a support structure having a surface on which the printed circuit board is coupled. The support structure has an outer rim that is attached to the force-compliant element. The apparatus also includes a sensor housing that covers the printed circuit board. The sensor housing has an outer rim attached to the force-compliant element.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 22, 2021
    Inventors: LAURENS C. FORTGENS, JAN-WILLEM SLOETJES, EDWIN VONK, RUBEN AUER, THOMAS GERJEN HENDRIK KOUWEN, CRISTOBAL RUIZ ZWOLLO
  • Patent number: 10744981
    Abstract: An electromechanical braking (EMB) connector for electrical communication between an interior of a brake caliper assembly and an exterior of the brake caliper assembly is disclosed. The EMB connector includes a body having a distal end for insertion into the interior of the brake caliper assembly and a proximal end for exposure on the exterior of the brake caliper assembly, with the distal end and the proximal end defining a body axis. The EMB connector also includes a load sensor connector for coupling with a load sensor disposed on the interior of the brake caliper assembly. The load sensor connector is compressible along a load sensor axis that is substantially perpendicular to the body axis. The EMB connector further includes a conductive component coupled to the load sensor connector. The conductive component enables electrical connection of the load sensor to the exterior of the brake caliper assembly.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: August 18, 2020
    Assignee: SENSATA TECHNOLOGIES, INC.
    Inventor: Ruben Auer
  • Publication number: 20190375383
    Abstract: An electromechanical braking (EMB) connector for electrical communication between an interior of a brake caliper assembly and an exterior of the brake caliper assembly is disclosed. The EMB connector includes a body having a distal end for insertion into the interior of the brake caliper assembly and a proximal end for exposure on the exterior of the brake caliper assembly, with the distal end and the proximal end defining a body axis. The EMB connector also includes a load sensor connector for coupling with a load sensor disposed on the interior of the brake caliper assembly. The load sensor connector is compressible along a load sensor axis that is substantially perpendicular to the body axis. The EMB connector further includes a conductive component coupled to the load sensor connector. The conductive component enables electrical connection of the load sensor to the exterior of the brake caliper assembly.
    Type: Application
    Filed: June 6, 2018
    Publication date: December 12, 2019
    Inventor: RUBEN AUER