Patents by Inventor Ruchika Singhal

Ruchika Singhal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080081982
    Abstract: A method and apparatus for optimizing a computer assisted procedure is provided. A method and apparatus for performing a procedure is also provided. Data can be accessed and processed to optimize and perform a procedure. The data can be augmented or supplemented with patient specific data.
    Type: Application
    Filed: March 8, 2007
    Publication date: April 3, 2008
    Applicant: MEDTRONIC, INC.
    Inventors: David Simon, Mark S. Lent, Ruchika Singhal, Andrew N. Csavoy
  • Publication number: 20070185539
    Abstract: A modular implantable medical device permits implantable medical devices to have a smaller profile in order to better fit into locations within the human body. A modular implantable medical device separates various functional components of the implantable medical device into a set of interconnected modules. This distributed architecture of a modular implantable medical device may permit the device footprint to be distributed over a larger area while making the profile smaller, and may permit the overall shape of the implantable medical device to better match the body location into which it is to be implanted. An overmold integrates the modules of a modular implantable medical device into a single structure. In some embodiments the overmold is flexible and provides a biocompatible interface from the component modules and the patient, while restraining potentially harmful intermodule motion.
    Type: Application
    Filed: April 16, 2007
    Publication date: August 9, 2007
    Applicant: Medtronic, Inc.
    Inventors: Ruchika Singhal, Darren Janzig, Carl Wahlstrand, Robert Skime, Paulette Olson
  • Patent number: 7242982
    Abstract: A modular implantable medical device permits implantable medical devices to have a smaller profile in order to better fit into locations within the human body. A modular implantable medical device separates various functional components of the implantable medical device into a set of interconnected modules. This distributed architecture of a modular implantable medical device may permit the device footprint to be distributed over a larger area while making the profile smaller, and may permit the overall shape of the implantable medical device to better match the body location into which it is to be implanted. An overmold integrates the modules of a modular implantable medical device into a single structure. In some embodiments the overmold is flexible and provides a biocompatible interface from the component modules and the patient, while restraining potentially harmful intermodule motion.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: July 10, 2007
    Assignee: Medtronic, Inc.
    Inventors: Ruchika Singhal, Darren A. Janzig, Carl D. Wahlstrand, Robert M. Skime, Paulette C. Olson
  • Patent number: 7212864
    Abstract: An implantable medical device for implantation in the head of a patient. The implantable medical device has a plurality of interconnected modules one or more of which are covered by an overmold and one or more of which are partially covered by the overmold. The module(s) covered by the overmold may be implanted between the cranium and scalp, while the module(s) partially covered by the overmold may be placed at least partially into a recess in the cranium.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: May 1, 2007
    Assignee: Medtronic, Inc.
    Inventors: Carl D. Wahlstrand, Ruchika Singhal, Robert M. Skime
  • Publication number: 20070074732
    Abstract: An implantable medical device with lubricious material permits implantable medical devices to have a reduced friction between the device and at least a portion of the surrounding tissue. The implantable medical device may have a housing or it may have a housing and a member for providing a smooth interface between the device and the tissue. The lubricious material may be provided on or impregnated in the housing or the member. In some embodiments, the device is configured for implantation in the head of a human body. In other embodiments, the device is configured for implantation between the cranium and the scalp. In some embodiments, the device includes a single module while in other embodiments a plurality of modules are coupled together to provide a smaller profile.
    Type: Application
    Filed: September 25, 2006
    Publication date: April 5, 2007
    Applicant: Medtronic, Inc.
    Inventors: Ruchika Singhal, Darren Janzig, Carl Wahlstrand, Robert Skime, Paulette Olson, Erik Scott, James Randall
  • Publication number: 20070039625
    Abstract: Systems and methods for coordinated delivery of a therapeutic agent and low (less than about 20 Hz) and high (greater than about 50 Hz) frequency stimulation therapy are described. The systems include a control unit for coordinating therapy delivery between an infusion device and a pulse generator, such that a therapeutic agent is administered at a predetermined time relative to application of either low frequency or high frequency stimulation. For example, the control unit may instruct the infusion device to deliver therapeutic agent at a predetermined time prior to delivery of low frequency stimulation. Systems that include more than one infusion device or an infusion pump capable of delivering more than one therapeutic agent are also described.
    Type: Application
    Filed: March 14, 2006
    Publication date: February 22, 2007
    Applicant: MEDTRONIC, INC.
    Inventors: Kenneth Heruth, Mark Lent, Ruchika Singhal, Michael Schendel
  • Publication number: 20070021802
    Abstract: Enhanced therapies for treating pain are described. The therapies include subcutaneous stimulation of tissue in proximity to a source of pain at low frequencies (less than about 20 Hz) and high frequencies (greater than about 50 Hz). The therapies further include administering a pain treating agent at a predetermined time relative to application of the high or low frequency stimulation. Delivery of the pain treating agent via an implantable infusion system is described. Coordination of output of an infusion device and a pulse generator to provide coordinated therapy is also discussed.
    Type: Application
    Filed: March 14, 2006
    Publication date: January 25, 2007
    Applicant: MEDTRONIC, INC.
    Inventors: Kenneth Heruth, Mark Lent, Ruchika Singhal, Michael Schendel
  • Publication number: 20070021801
    Abstract: Enhanced therapies for treating pain are described. The therapies include subcutaneous stimulation of tissue in proximity to a source of pain at low frequencies (less than about 20 Hz) and high frequencies (greater than about 50 Hz). The subcutaneous stimulation may be applied in proximity to a structure in the back, such as discs, facet joints, nerve roots or ganglions, sympathetic chain, ligaments, muscles, and the like. Subcutaneous stimulation at high and low frequencies applied in combination with epidural stimulation is also described.
    Type: Application
    Filed: March 14, 2006
    Publication date: January 25, 2007
    Applicant: MEDTRONIC, INC.
    Inventors: Kenneth Heruth, Mark Lent, Ruchika Singhal, Michael Schendel, Gary King
  • Publication number: 20060195156
    Abstract: In general, the invention is directed to apparatus and techniques that aid in the removal or explantation of an implantable medical device (IMD) under the scalp of a patient. The various embodiments of the invention address risks associated with the explantation, such as the risk of damage to leads, the risk of damage to the IMD, the risk that the incision may hinder the explantation, and the risk that the IMD may be difficult to remove. In some embodiments, the invention is directed to apparatus that help the surgeon identify the location of the implanted elements, and that protect the implanted elements from inadvertent damage. In other embodiments, the invention is directed to techniques that facilitate the removal of the IMD.
    Type: Application
    Filed: April 13, 2006
    Publication date: August 31, 2006
    Applicant: Medtronic, Inc.
    Inventors: Ruchika Singhal, Carl Wahlstrand, Robert Skime, Ashwini Sharan
  • Publication number: 20060184210
    Abstract: In general, the invention is directed to apparatus and techniques that aid in the removal or explantation of an implantable medical device (IMD) under the scalp of a patient. The various embodiments of the invention address risks associated with the explantation, such as the risk of damage to leads, the risk of damage to the IMD, the risk that the incision may hinder the explantation, and the risk that the IMD may be difficult to remove. In some embodiments, the invention is directed to apparatus that help the surgeon identify the location of the implanted elements, and that protect the implanted elements from inadvertent damage. In other embodiments, the invention is directed to techniques that facilitate the removal of the IMD.
    Type: Application
    Filed: April 13, 2006
    Publication date: August 17, 2006
    Applicant: Medtronic, Inc.
    Inventors: Ruchika Singhal, Carl Wahlstrand, Robert Skime, Ashwini Sharan
  • Publication number: 20060184220
    Abstract: In general, the invention is directed to apparatus and techniques that aid in the removal or explantation of an implantable medical device (IMD) under the scalp of a patient. The various embodiments of the invention address risks associated with the explantation, such as the risk of damage to leads, the risk of damage to the IMD, the risk that the incision may hinder the explantation, and the risk that the IMD may be difficult to remove. In some embodiments, the invention is directed to apparatus that help the surgeon identify the location of the implanted elements, and that protect the implanted elements from inadvertent damage. In other embodiments, the invention is directed to techniques that facilitate the removal of the IMD.
    Type: Application
    Filed: April 13, 2006
    Publication date: August 17, 2006
    Applicant: Medtronic, Inc.
    Inventors: Ruchika Singhal, Carl Wahlstrand, Robert Skime, Ashwini Sharan
  • Publication number: 20060009806
    Abstract: Implantable medical devices (IMDS) having anti-infective properties are described. Anti-infective agents are disposed in, on, or about at least a portion of a surface of the medical device. The anti-infective agents are disposed in or on a vehicle, which may be in the form of a coating layer or covering. The vehicle may be biodegradable so that, over time, the anti-infective agent is removed from a tissue location into which the device is implanted, reducing the likelihood that microorganisms resistant to the anti-infective agent will develop. IMDs having an anti-infective agent and an anti-activity agent disposed therein, thereabout, or thereon are also described. The anti-activity agent interferes with the activity of the anti-infective agent, may be released from a surface at the IMD at a time when activity of the anti-infective agent is no longer desired, and may reduce the likelihood that microorganisms resistant to the anti-infective agent will develop.
    Type: Application
    Filed: December 9, 2004
    Publication date: January 12, 2006
    Applicant: MEDTRONIC INC
    Inventors: Kenneth Heruth, Christopher Hobot, William Hooper, Mark Lent, Ruchika Singhal, Robert Skime, Randall Sparer, Maura Donovan, William Bertrand
  • Publication number: 20050267543
    Abstract: An anti-infective covering for an implantable medical device is described. The covering may be a polymeric boot that comprises an anti-infective agent in an amount effective to prevent an infection when implanted in a pocket of a patient. The boot is configured to snuggly engage at least a portion of the implantable medical device. The boot may contain a side hole that allows a housing of the implantable medical device to serve as a return electrode. The boot may be placed about the implantable medical device to render the device anti-infective.
    Type: Application
    Filed: December 9, 2004
    Publication date: December 1, 2005
    Applicant: MEDTRONIC INC
    Inventors: Kenneth Heruth, Christopher Hobot, William Hooper, Mark Lent, Ruchika Singhal, Robert Skime, Randall Sparer, Maura Donovan, Richard Ries, Kenneth Cobian
  • Publication number: 20050245984
    Abstract: An implantable medical device with lubricious material permits implantable medical devices to have a reduced friction between the device and at least a portion of the surrounding tissue. The implantable medical device may have a housing or it may have a housing and a member for providing a smooth interface between the device and the tissue. The lubricious material may be provided on or impregnated in the housing or the member. In some embodiments, the device is configured for implantation in the head of a human body. In other embodiments, the device is configured for implantation between the cranium and the scalp. In some embodiments, the device includes a single module while in other embodiments a plurality of modules are coupled together to provide a smaller profile.
    Type: Application
    Filed: April 30, 2004
    Publication date: November 3, 2005
    Applicant: Medtronic, Inc.
    Inventors: Ruchika Singhal, Darren Janzig, Carl Wahlstrand, Robert Skime, Paulette Olson, Erik Scott, James Randall
  • Publication number: 20050245806
    Abstract: In general, the invention is directed to strategies pertaining to implantation of an implantable medical device between a scalp and a skull of the patient. The invention pertains to collection of data such as data pertaining to the skull of the patient, the scalp of the patient, the vascular structure or neurological structures in the head of the patient, and the like. The data may be in the form of images, such as images generated by X-ray, magnetic resonance imaging, CT-scan and fluoroscopy. A surgeon can use the collected data to determine, for example, whether the patient is a candidate for a cranial implantation, whether the patient's skull and scalp can support the implantation, what configuration of device should be implanted, where the device should be implanted, and how the surgical incisions should be made.
    Type: Application
    Filed: April 29, 2004
    Publication date: November 3, 2005
    Inventors: Ruchika Singhal, Carl Wahlstrand, Robert Skime, Steven Urquhart
  • Publication number: 20050060001
    Abstract: A medical device detects a previously defined event, and controls delivery of therapy to a patient according to therapy information associated with the previously defined event. In exemplary embodiments, the medical device enters a learning mode in response to a command received from a user, e.g., the patient or a clinician. In such embodiments, the medical device defines the event, collects the therapy information, and associates the therapy information with the defined event while operating in the learning mode. In some embodiments, the medical device defines the event based on the output of a sensor that indicates a physiological parameter of the patient during the learning mode. The sensor may be an accelerometer, which generates an output that reflects motion and/or posture of the patient. The medical device may collect therapy information by recording therapy changes made by the user during the learning mode.
    Type: Application
    Filed: October 23, 2003
    Publication date: March 17, 2005
    Inventors: Ruchika Singhal, Robert Skime, Steven Jensen
  • Publication number: 20050004637
    Abstract: In general, the invention is directed to apparatus and techniques that aid in the removal or explantation of an implantable medical device (IMD) under the scalp of a patient. The various embodiments of the invention address risks associated with the explantation, such as the risk of damage to leads, the risk of damage to the IMD, the risk that the incision may hinder the explantation, and the risk that the IMD may be difficult to remove. In some embodiments, the invention is directed to apparatus that help the surgeon identify the location of the implanted elements, and that protect the implanted elements from inadvertent damage. In other embodiments, the invention is directed to techniques that facilitate the removal of the IMD.
    Type: Application
    Filed: April 29, 2004
    Publication date: January 6, 2005
    Inventors: Ruchika Singhal, Carl Wahlstrand, Robert Skime, Ashwini Sharan
  • Publication number: 20050004620
    Abstract: An implantable medical device with anti-infection agent. The implantable medical device may be configured for placement in the head of a patient and for monitoring or treatment of the brain. The implantable medical device may have a housing or it may have a housing and a member for providing a smooth interface between the device and the adjacent tissue. The anti-infection agent may be provided on or impregnated in the housing or the member. In some embodiments, the device includes a single module while in other embodiments a plurality of modules are coupled to provide a smaller profile. In some embodiments the implantable medical device may include both anti-infection and lubricious materials.
    Type: Application
    Filed: April 30, 2004
    Publication date: January 6, 2005
    Applicant: Medtronic, Inc.
    Inventors: Ruchika Singhal, Darren Janzig, Carl Wahlstrand, Robert Skime, Paulette Olson, Erik Scott, James Randall
  • Publication number: 20040176673
    Abstract: At least one surface of an implantable medical device is concave along at least one axis such that it substantially conforms to a surface within a patient, such as the cranium, when it is implanted on that surface. In some embodiments, the surface of the implantable medical device substantially conforms to an arc with a radius that is between 4.5 and 9.5 centimeters, and is preferably approximately equal to 7 centimeters. In some embodiments, the implantable medical device comprises a plurality of interconnected modules, and an overmold that at least partially encapsulates each of the modules. In such embodiments, at least one surface of the overmold is concave along at least one axis. Further, each of the modules of such an implantable medical device may comprise a housing, and at least one surface of at least one of the housings may be concave along at least one axis.
    Type: Application
    Filed: December 9, 2003
    Publication date: September 9, 2004
    Inventors: Carl D. Wahlstrand, Darren A. Janzig, Ruchika Singhal, Robert M. Skime, Erik R. Scott, James E. Randall
  • Publication number: 20040176818
    Abstract: An implantable medical device includes a plurality of separately housed and flexibly interconnected modules. A first module includes a control electronics within a first housing, and may be coupled to a second module that includes a second housing by a flexible interconnect member. In some embodiments, an overmold, which may be flexible, at least partially encapsulates the first and second housings. The second module may be a power source module that includes a power source, such as a rechargeable battery, within the second housing. The implantable medical device may also include a third module, such as a recharge module that includes a coil within a third housing. The overmold may at least partially encapsulate the third housing, or the third module may be tethered to the overmold by a flexible tether member. A flexible interconnect member and/or flexible overmold may allow multiples degrees of freedom of movement between modules of an implantable medical device.
    Type: Application
    Filed: December 9, 2003
    Publication date: September 9, 2004
    Inventors: Carl D. Wahlstrand, Ruchika Singhal, Robert M. Skime