Patents by Inventor Rudi Blondia

Rudi Blondia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240098867
    Abstract: An illumination source includes a laser driver unit configured to emit a plasma sustaining beam. An ingress collimator receives the plasma sustaining beam and produces a collimated ingress beam. A focusing optic receives the collimated ingress beam and produce a focused sustaining beam. A sealed lamp chamber contains an ionizable media that, once ignited, forms a high intensity light emitting plasma having a waist size smaller than 150 microns. The sealed lamp chamber further includes an ingress window configured to receive the focused sustaining beam and an egress window configured to emit the high intensity light. An ignition source is configured to ignite the ionizable media, and an exit fiber is configured to receive and convey the high intensity light. The high intensity light is white light with a black body spectrum, and the exit fiber has a diameter in the range of 200-500 micrometers.
    Type: Application
    Filed: October 13, 2023
    Publication date: March 21, 2024
    Applicant: Excelitas Technologies Singapore Pte. Ltd.
    Inventor: Rudi Blondia
  • Patent number: 11825588
    Abstract: An illumination source includes a laser driver unit configured to emit a plasma sustaining beam. An ingress collimator receives the plasma sustaining beam and produces a collimated ingress beam. A focusing optic receives the collimated ingress beam and produce a focused sustaining beam. A sealed lamp chamber contains an ionizable media that, once ignited, forms a high intensity light emitting plasma having a waist size smaller than 150 microns. The sealed lamp chamber further includes an ingress window configured to receive the focused sustaining beam and an egress window configured to emit the high intensity light. An ignition source is configured to ignite the ionizable media, and an exit fiber is configured to receive and convey the high intensity light. The high intensity light is white light with a black body spectrum, and the exit fiber has a diameter in the range of 200-500 micrometers.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: November 21, 2023
    Assignee: Excelitas Technologies Singapore Pte. Ltd.
    Inventor: Rudi Blondia
  • Patent number: 11533800
    Abstract: An illumination source includes a laser driver unit configured to emit a plasma sustaining beam. An ingress collimator receives the plasma sustaining beam and produces a collimated ingress beam. A focusing optic receives the collimated ingress beam and produce a focused sustaining beam. A sealed lamp chamber contains an ionizable media that, once ignited, forms a high intensity light emitting plasma having a waist size smaller than 150 microns. The sealed lamp chamber further includes an ingress window configured to receive the focused sustaining beam and an egress window configured to emit the high intensity light. An ignition source is configured to ignite the ionizable media, and an exit fiber is configured to receive and convey the high intensity light. The high intensity light is white light with a black body spectrum, and the exit fiber has a diameter in the range of 200-500 micrometers.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: December 20, 2022
    Assignee: Excelitas Technologies Singapore Pte. Ltd.
    Inventor: Rudi Blondia
  • Publication number: 20200187340
    Abstract: An illumination source includes a laser driver unit configured to emit a plasma sustaining beam. An ingress collimator receives the plasma sustaining beam and produces a collimated ingress beam. A focusing optic receives the collimated ingress beam and produce a focused sustaining beam. A sealed lamp chamber contains an ionizable media that, once ignited, forms a high intensity light emitting plasma having a waist size smaller than 150 microns. The sealed lamp chamber further includes an ingress window configured to receive the focused sustaining beam and an egress window configured to emit the high intensity light. An ignition source is configured to ignite the ionizable media, and an exit fiber is configured to receive and convey the high intensity light. The high intensity light is white light with a black body spectrum, and the exit fiber has a diameter in the range of 200-500 micrometers.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 11, 2020
    Inventor: Rudi Blondia
  • Patent number: 10504714
    Abstract: The invention is directed to a sealed high intensity illumination device configured to receive a laser beam from a laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber includes a reflective chamber interior surface having a first parabolic contour and parabolic focal region, a second parabolic contour and parabolic focal region, an ingress surface configured to admit the laser beam into the chamber, and an egress surface configured to emit high intensity light from the chamber. The first parabolic contour is configured to reflect light from the first parabolic focal region to the second parabolic contour, and the second parabolic contour is configured to reflect light from the first parabolic contour to the second parabolic focal region.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: December 10, 2019
    Assignee: Excelitas Technologies Corp.
    Inventor: Rudi Blondia
  • Patent number: 10497555
    Abstract: A sealed high intensity illumination device configured to receive a laser beam from a laser light source and method for making the same are disclosed. The device includes a sealed cylindrical chamber configured to contain an ionizable medium. The chamber has a cylindrical wall, with an ingress and an egress window disposed opposite the ingress window. A tube insert is disposed within the chamber formed of an insulating material. The insert is configured to receive the laser beam within the insert inner diameter.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: December 3, 2019
    Assignee: Excelitas Technologies Corp.
    Inventor: Rudi Blondia
  • Publication number: 20190108994
    Abstract: The invention is directed to a sealed high intensity illumination device configured to receive a laser beam from a laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber includes a reflective chamber interior surface having a first parabolic contour and parabolic focal region, a second parabolic contour and parabolic focal region, an ingress surface configured to admit the laser beam into the chamber, and an egress surface configured to emit high intensity light from the chamber. The first parabolic contour is configured to reflect light from the first parabolic focal region to the second parabolic contour, and the second parabolic contour is configured to reflect light from the first parabolic contour to the second parabolic focal region.
    Type: Application
    Filed: December 5, 2018
    Publication date: April 11, 2019
    Inventor: Rudi Blondia
  • Patent number: 10186416
    Abstract: An apparatus and a method for operating a sealed high intensity illumination lamp configured to receive a laser beam from a laser light source. The lamp includes a sealed chamber configured to contain an ionizable medium having a plasma sustaining region, and a plasma ignition region. A high intensity light egress window emits high intensity light from the chamber. A substantially flat ingress window located within a wall of the chamber admits the laser beam into the chamber. The lamp includes means for controlled increasing and decreasing a pressure level within the sealed chamber while the lamp is producing the high intensity illumination.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: January 22, 2019
    Assignee: Excelitas Technologies Corp.
    Inventor: Rudi Blondia
  • Patent number: 10186414
    Abstract: The invention is directed to a sealed high intensity illumination device configured to receive a laser beam from a laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber includes a reflective chamber interior surface having a first parabolic contour and parabolic focal region, a second parabolic contour and parabolic focal region, and an interface surface. An ingress surface is disposed within the interface surface configured to admit the laser beam into the chamber, and an egress surface disposed within the interface surface configured to emit high intensity light from the chamber. The first parabolic contour is configured to reflect light from the first parabolic focal region to the second parabolic contour, and the second parabolic contour is configured to reflect light from the first parabolic contour to the second parabolic focal region.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: January 22, 2019
    Assignee: Excelitas Technologies Corp.
    Inventor: Rudi Blondia
  • Patent number: 10109473
    Abstract: A laser sustained plasma lamp includes a mechanically sealed pressurized chamber assembly (330) configured to contain an ionizable material. The chamber assembly is bounded by a chamber tube (310), an ingress sapphire window (340), a first metal seal ring (320) configured to seal against the chamber tube ingress end and the ingress sapphire window, an egress sapphire window (342), and a second metal seal ring (322) configured to seal against the chamber tube egress end and the egress sapphire window. A mechanical clamping structure (350, 355) external to the chamber assembly is configured to clamp across at least a portion of the ingress sapphire window and the egress sapphire window. The ingress sapphire window and the egress sapphire window are not connected to the chamber tube via welding and/or brazing.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: October 23, 2018
    Assignee: Excelitas Technologies Corp.
    Inventors: Rudi Blondia, Douglas A. Doughty, John Kiss, Roy D. Roberts
  • Publication number: 20180301330
    Abstract: A sealed high intensity illumination device configured to receive a laser beam from a laser light source and method for making the same are disclosed. The device includes a sealed cylindrical chamber configured to contain an ionizable medium. The chamber has a cylindrical wall, with an ingress and an egress window disposed opposite the ingress window. A tube insert is disposed within the chamber formed of an insulating material. The insert is configured to receive the laser beam within the insert inner diameter.
    Type: Application
    Filed: June 21, 2018
    Publication date: October 18, 2018
    Inventor: Rudi Blondia
  • Patent number: 10057508
    Abstract: An illumination device with an integrated thermal imaging sensor and method for using the same are disclosed. The device includes a solid state illumination source, and a thermal imager comprising a multi-pixel heat sensing device. A controller is configured to control the thermal imager, and a power source is configured to supply power to the illumination source, the thermal imager, and the controller.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: August 21, 2018
    Assignee: Excelitas Technologies Corp.
    Inventors: Joel Falcone, Rudi Blondia, Arthur John Barlow
  • Patent number: 10057973
    Abstract: An ignition facilitated electrodeless sealed high intensity illumination device is configured to receive a laser beam from a continuous wave (CW) laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber has an ingress window disposed within a wall of a chamber interior surface configured to admit the laser beam into the chamber, a plasma sustaining region, and a high intensity light egress window configured to emit high intensity light from the chamber. The CW laser beam is producible by a CW laser below 250 Watts configured to produce a wavelength below 1100 nm. The device is configured to focus the laser beam to a full width at half maximum (FWHM) beam waist of 1-15 microns2 and a Rayleigh length of 6 microns or less, and the plasma is configured to be ignited by the CW laser beam.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: August 21, 2018
    Assignee: Excelitas Technologies Corp.
    Inventor: Rudi Blondia
  • Patent number: 10008378
    Abstract: A sealed high intensity illumination device configured to receive a laser beam from a laser light source and method for making the same are disclosed. The device includes a sealed cylindrical chamber configured to contain an ionizable medium. The chamber has a cylindrical wall, with an ingress and an egress window disposed opposite the ingress window. A tube insert is disposed within the chamber formed of an insulating material. The insert is configured to receive the laser beam within the insert inner diameter.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: June 26, 2018
    Assignee: Excelitas Technologies Corp.
    Inventor: Rudi Blondia
  • Patent number: 9922814
    Abstract: An apparatus and a method for operating a sealed beam lamp containing an ionizable medium are disclosed. The lamp includes a sealed chamber, a pair of ignition electrodes, a substantially flat chamber ingress window, and a laser light source disposed outside the chamber producing laser light. Laser light is focused to a first focal region coinciding with an ignition region disposed between the ignition electrodes. The ionizable medium at the ignition region is ignited with the laser. The laser light is focused to a second focal region coinciding with a plasma sustaining region not co-located with the plasma ignition region.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: March 20, 2018
    Assignee: Excelitas Technologies Corp.
    Inventor: Rudi Blondia
  • Publication number: 20170263433
    Abstract: The invention is directed to a sealed high intensity illumination device configured to receive a laser beam from a laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber includes a reflective chamber interior surface having a first parabolic contour and parabolic focal region, a second parabolic contour and parabolic focal region, and an interface surface. An ingress surface is disposed within the interface surface configured to admit the laser beam into the chamber, and an egress surface disposed within the interface surface configured to emit high intensity light from the chamber. The first parabolic contour is configured to reflect light from the first parabolic focal region to the second parabolic contour, and the second parabolic contour is configured to reflect light from the first parabolic contour to the second parabolic focal region.
    Type: Application
    Filed: May 25, 2017
    Publication date: September 14, 2017
    Inventor: Rudi Blondia
  • Patent number: 9748086
    Abstract: A method and apparatus for a sealed high intensity illumination device are disclosed. The device is configured to receive a laser beam from a laser light source. The device has a sealed chamber configured to contain an ionizable medium. The chamber has a substantially flat ingress window disposed within a wall of the integral reflective chamber interior surface configured to admit the laser beam into the chamber, a plasma sustaining region, a plasma ignition region, and a high intensity light egress window configured to emit high intensity light from the chamber. The chamber has an integral reflective chamber interior surface configured to reflect high intensity light from the plasma sustaining region to the egress window. There is a direct path of the laser beam from the laser light source through the lens and ingress window to the lens focal region.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: August 29, 2017
    Assignee: Excelitas Technologies Corp.
    Inventor: Rudi Blondia
  • Patent number: 9741553
    Abstract: The invention is directed to a sealed high intensity illumination device configured to receive a laser beam from a laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber includes a reflective chamber interior surface having a first parabolic contour and parabolic focal region, a second parabolic contour and parabolic focal region, and an interface surface. An ingress surface is disposed within the interface surface configured to admit the laser beam into the chamber, and an egress surface disposed within the interface surface configured to emit high intensity light from the chamber. The first parabolic contour is configured to reflect light from the first parabolic focal region to the second parabolic contour, and the second parabolic contour is configured to reflect light from the first parabolic contour to the second parabolic focal region.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: August 22, 2017
    Assignee: Excelitas Technologies Corp.
    Inventor: Rudi Blondia
  • Publication number: 20170135192
    Abstract: An ignition facilitated electrodeless sealed high intensity illumination device is configured to receive a laser beam from a continuous wave (CW) laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber has an ingress window disposed within a wall of a chamber interior surface configured to admit the laser beam into the chamber, a plasma sustaining region, and a high intensity light egress window configured to emit high intensity light from the chamber. The CW laser beam is producible by a CW laser below 250 Watts configured to produce a wavelength below 1100 nm. The device is configured to focus the laser beam to a full width at half maximum (FWHM) beam waist of 1-15 microns2 and a Rayleigh length of 6 microns or less, and the plasma is configured to be ignited by the CW laser beam.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Inventor: Rudi Blondia
  • Patent number: 9576785
    Abstract: An ignition facilitated electrodeless sealed high intensity illumination device is disclosed. The device is configured to receive a laser beam from a continuous wave (CW) laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber has an ingress window disposed within a wall of a chamber interior surface configured to admit the laser beam into the chamber, a plasma sustaining region, and a high intensity light egress window configured to emit high intensity light from the chamber. A path of the CW laser beam from the laser light source through the ingress window to a focal region within the chamber is direct. The ingress window is configured to focus the laser beam to within a predetermined volume, and the plasma is configured to be ignited by the CW laser beam, optionally by heating of a non-electrode ignition agent located entirely within the chamber.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: February 21, 2017
    Assignee: Excelitas Technologies Corp.
    Inventor: Rudi Blondia