Patents by Inventor Ruffin E. EVANS

Ruffin E. EVANS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11074520
    Abstract: Systems and methods are disclosed for preparing and evolving atomic defects in diamond. Silicon vacancy spins may be cooled to temperatures equal to or below 500 mK to reduce the influence of phonons. The cooling, manipulation, and observation systems may be designed to minimize added heat into the system. A CPMG sequence may be applied to extend coherence times. Coherence times may be extended, for example, to 13 ms.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: July 27, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: Denis D. Sukachev, Alp Sipahigil, Christian Thieu Nguyen, Mihir Keshav Bhaskar, Ruffin E. Evans, Mikhail D. Lukin
  • Patent number: 10734781
    Abstract: In an exemplary embodiment, a structure comprises a plurality of deterministically positioned optically active defects, wherein each of the plurality of deterministically positioned optically active defects has a linewidth within a factor of one hundred of a lifetime limited linewidth of optical transitions of the plurality of deterministically positioned optically active defects, and wherein the plurality of deterministically positioned optically active defects has an inhomogeneous distribution of wavelengths, wherein at least half of the plurality of deterministically positioned optically active defects have transition wavelengths within a less than 8 nm range.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: August 4, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Ruffin E. Evans, Alp Sipahigil, Mikhail D. Lukin
  • Publication number: 20200184362
    Abstract: Systems and methods are disclosed for preparing and evolving atomic defects in diamond. Silicon vacancy spins may be cooled to temperatures equal to or below 500 mK to reduce the influence of phonons. The cooling, manipulation, and observation systems may be designed to minimize added heat into the system. A CPMG sequence may be applied to extend coherence times. Coherence times may be extended, for example, to 13 ms.
    Type: Application
    Filed: August 10, 2018
    Publication date: June 11, 2020
    Inventors: Denis D. SUKACHEV, Alp SIPAHIGIL, Christian Thieu NGUYEN, Mihir Keshav BHASKAR, Ruffin E. EVANS, Mikhail D. LUKIN
  • Publication number: 20180351323
    Abstract: In an exemplary embodiment, a structure comprises a plurality of deterministically positioned optically active defects, wherein each of the plurality of deterministically positioned optically active defects has a linewidth within a factor of one hundred of a lifetime limited linewidth of optical transitions of the plurality of deterministically positioned optically active defects, and wherein the plurality of deterministically positioned optically active defects has an inhomogeneous distribution of wavelengths, wherein at least half of the plurality of deterministically positioned optically active defects have transition wavelengths within a less than 8 nm range.
    Type: Application
    Filed: November 16, 2016
    Publication date: December 6, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: Ruffin E. EVANS, Alp SIPAHIGIL, Mikhail D. LUKIN