Patents by Inventor Rui Protasio

Rui Protasio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9140644
    Abstract: This invention relates to a method that makes the measurement of a trace gas concentration invariant or at least less affected to pressure variations in the gas and atmospheric pressure changes. This method neither requires a pressure sensor nor a pressure calibration routine. Furthermore, the method can be applied to other gas species present in the background gas or to the background gas itself that cross-interfere with the target gas of interest. This allows removing any pressure dependency of cross-interference parameters of other gas species and/or the background gas. The new method for accurately measuring a gas concentration is based on optimizing the wavelength modulation amplitude of the laser to minimum pressure dependency.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: September 22, 2015
    Assignee: Axetris AG
    Inventors: Andreas Wittmann, Stefan Manzeneder, Rui Protasio, Michel Studer, Thomas Hessler
  • Patent number: 8594143
    Abstract: The invention relates to a laser diode structure, specifically for use in gas detection, with a hermetically sealed housing with electrical connections having a bottom and a window. A laser diode chip and a temperature control system for the laser diode chip are provided in the housing. A thermo element in the form of a Peltier element forms the temperature control system, and is connected via a lower flat surface to the bottom of the housing and via an upper flat surface to the laser diode chip, with a temperature-controlled beam shaping element as collimator provided between the laser diode chip and the window of the housing that acts on a laser beam emerging from a laser aperture of the laser diode chip before it passes through the window. The beam shaping element is in contact with the laser diode chip and is preferably connected via a boundary surface to the laser aperture with surface-to-surface contact or adhesively, or is made in one piece together with the laser aperture.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: November 26, 2013
    Assignee: Axetris AG
    Inventors: Bert Willing, Rui Protasio, Mathieu Gaillard
  • Publication number: 20130070797
    Abstract: Laser unit, preferably for gas detection, with a semiconductor laser chip comprising an output mirror with an exit zone for a laser beam and an optical element that reduces self-mixing which is arranged at the exit zone, wherein optical element and laser chip are connected with each other with direct physical contact over an entire surface, at least in the exit zone. Said optical element is connected to the laser chip positively or by means of an optical medium. Thereby optionally a beam-shaping element may be arranged on the optical element that is connected positively or by means of an optical medium with the optical element. Preferably beam-shaping element and optical element have similar or identical refractory indices and are connected with each other and with the laser chip by adhesive agents having corresponding refractory indices.
    Type: Application
    Filed: October 4, 2011
    Publication date: March 21, 2013
    Applicant: LEISTER PROCESS TECHNOLOGIES
    Inventors: Andreas WITTMANN, Michel STUDER, Rui PROTASIO, Corrado FRASCHINA
  • Publication number: 20120283961
    Abstract: This invention relates to a method that makes the measurement of a trace gas concentration invariant or at least less affected to pressure variations in the gas and atmospheric pressure changes. This method neither requires a pressure sensor nor a pressure calibration routine. Furthermore, the method can be applied to other gas species present in the background gas or to the background gas itself that cross-interfere with the target gas of interest. This allows removing any pressure dependency of cross-interference parameters of other gas species and/or the background gas. The new method for accurately measuring a gas concentration is based on optimizing the wavelength modulation amplitude of the laser to minimum pressure dependency.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Applicant: AXETRIS AG
    Inventors: Andreas WITTMANN, Stefan MANZENEDER, Rui PROTASIO, Michel STUDER, Thomas HESSLER
  • Publication number: 20110110390
    Abstract: The invention relates to a laser diode structure, specifically for use in gas detection, with a hermetically sealed housing with electrical connections having a bottom and a window. A laser diode chip and a temperature control system for the laser diode chip are provided in the housing. A thermo element in the form of a Peltier element forms the temperature control system, and is connected via a lower flat surface to the bottom of the housing and via an upper flat surface to the laser diode chip, with a temperature-controlled beam shaping element as collimator provided between the laser diode chip and the window of the housing that acts on a laser beam emerging from a laser aperture of the laser diode chip before it passes through the window. The beam shaping element is in contact with the laser diode chip and is preferably connected via a boundary surface to the laser aperture with surface-to-surface contact or adhesively, or is made in one piece together with the laser aperture.
    Type: Application
    Filed: December 1, 2009
    Publication date: May 12, 2011
    Applicant: LEISTER PROCESS TECHNOLOGIES
    Inventors: Bert Willing, Rui Protasio, Mathieu Gaillard