Patents by Inventor Rung-Ywan Tsai

Rung-Ywan Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8702924
    Abstract: An electrode for an electrochemical device includes a conductor, and an active layer formed on the conductor and including a polybenzimidazole polymer that contains at least one of the functional group of the following formula:
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: April 22, 2014
    Assignee: Chang Gung University
    Inventors: Mu-Yi Hua, Hsiao-Chien Chen, Rung-Ywan Tsai, Kong-Wei Cheng
  • Patent number: 8653203
    Abstract: A method for preparing a carboxylic polybenzimidazole includes reacting a polybenzimidazole polymer with a cyclic acid anhydride to form the carboxylic polybenzimidazole.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: February 18, 2014
    Assignee: Chang Gung University
    Inventors: Mu-Yi Hua, Hsiao-Chien Chen, Rung-Ywan Tsai, Kong-Wei Cheng
  • Patent number: 8653204
    Abstract: A carboxylic polybenzimidazole includes at least one of the following functional group of formula (I): wherein G is a group containing a carboxylic acid end group or a carboxylated end group.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: February 18, 2014
    Assignee: Chang Gung University
    Inventors: Mu-Yi Hua, Hsiao-Chien Chen, Rung-Ywan Tsai, Lee-Yih Wang
  • Publication number: 20130299587
    Abstract: A carrier with the optical registration function is disclosed. The carrier allows the registration of inspected results of the sampling images of the sample to the corresponding address codes of the address coding site of the carrier.
    Type: Application
    Filed: July 21, 2013
    Publication date: November 14, 2013
    Inventors: Kuo-Tung Tiao, Sheng-Li Chang, Jung-Po Chen, Chun-Chieh Huang, Jyh-Chern Chen, Rung-Ywan Tsai, Tai-Ting Huang, Yuan-Chin Lee, Feng-Hsiang Lo, Lung-Pin Chung, Hung-Chih Chiang, Kuo-Yao Weng
  • Publication number: 20130270112
    Abstract: This invention is directed to a polyamic acid represented by the following formula (I), and an electrode having an active layer made from the polyamic acid of formula (I).
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Applicant: Chang Gun University
    Inventors: Mu-Yi Hua, Yaw-Terng Chern, Hsiao-Chien Chen, Rung-Ywan Tsai
  • Publication number: 20130251814
    Abstract: The present invention discloses a magnetic nanodrug for treating thrombosis, which comprises a core formed of magnetic nanoparticles, a shell enveloping the core and made of carboxyl-functionalized polyaniline, and a thrombosis-treatment drug covalently bonded to the shell. The magnetic nanodrug of the present invention is non-toxic to vascular endothelial cells, has superior stability, features superparamagnetism, and can be uniformly dissolved in water. Therefore, the magnetic nanodrug for treating thrombosis can be guided by an external magnetic field to concentrate on a specified region and increase the effect of thrombosis treatment.
    Type: Application
    Filed: September 14, 2012
    Publication date: September 26, 2013
    Inventors: Mu-Yi Hua, Hung-Wei Yang, Tony Wu, Rung-Ywan Tsai, Yunn-Hwa Ma, Jyh-Ping Chen
  • Patent number: 8514390
    Abstract: An optical equipment for inspecting and addressing a specimen is disclosed. The optical equipment comprises an optical device and a processing module. The optical device comprises a light source, a sample inspecting device and an address detecting device. The sample inspecting device comprises a first objective lens and a first detector. A beam is focused on a sample placed in an inspected site of a specimen by the first objective lens. The address detecting device comprises a second objective lens and a second detector. A beam is focused on the address coding site by the second objective lens. The processing module controls the beam to be focused on the sampling points of the inspected site to generate first optical signals, and simultaneously controls the beam of the light source to be focused on the corresponding address codes of the address coding site to generate second optical signals.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: August 20, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Kuo-Tung Tiao, Jau-Jiu Ju, Guo-Zua Wu, Tai-Ting Huang, Yuan-Chin Lee, Rung-Ywan Tsai
  • Publication number: 20130137894
    Abstract: A chemically-modified graphene includes a graphene layer and a plurality of functional groups that are grafted to the graphene layer and each of which is represented by —CO—R—COOH, wherein R is an optionally substituted C1-C5 alkylene group or an optionally substituted C1-C5 alkenylene group. A method for producing a chemically-modified grapheme includes subjecting a cyclic anhydride and graphite to a Friedel-Crafts reaction in the presence of a Lewis acid.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 30, 2013
    Applicant: Chang Gung University
    Inventors: Mu-Yi Hua, Shi-Liang Chen, Hsiao-Chien Chen, Rung-Ywan Tsai, Wu-Shiung Feng, Ming-Jer Jeng
  • Publication number: 20130011485
    Abstract: The present invention discloses a magnetic nanomedicine for inhibiting/treating human prostate cancer, which comprises a core containing a magnetic particle having a diameter of less than 10 nm; a shell made of a carboxylated polyaniline and encapsulating the core; and a medicine covalently linked to the shell and able to inhibit/treat prostate cancer. The magnetic nanomedicine of the present invention not only has superior thermal stability and but also has water solubility higher than that of the conventional anti-prostate cancer medicine. Further, the magnetic nanomedicine of the present invention can be magnetically conducted to the cancer area to increase the local concentration of medicine and enhance the therapeutic effect.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Applicant: Chang Gung University
    Inventors: Mu-Yi HUA, Hung-Wei Yang, Cheng-Keng Chuang, See-Tong Pang, Hao-Li Liu, Rung-Ywan Tsai, Kun-Lung Chuang
  • Publication number: 20120328705
    Abstract: A magnetic nanomedicine for tumor suppression and therapy, comprising: a core, made of magnetic nanoparticles; a shell, encapsulating said core and is made of carboxylated polyaniline (SPAnH); and a tumor suppression medicine Epirubicin (EPI) or Doxorubicin (DOX) covalently bonded onto said shell. Said magnetic nanomedicine is capable of improving its thermal stability, and it can be dissolved uniformly in water, plus its superparamagnetic property, thus it can be guided by an outside magnetic field to concentrate to the site of tumor distribution to increase the local medicine concentration and enhance therapy effect.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 27, 2012
    Inventors: Mu-Yi Hua, Hong-Wei Yang, Cheng-Keng Chuang, See-Tong Pang, Rung-Ywan Tsai, Kun-Lung Chuang
  • Patent number: 8329064
    Abstract: The present invention provides a water-soluble self-acid-doped polyaniline blends, comprising a 70-90% weight percentage polyaniline derivative and 10-30% weight percentage at least a water-soluble polymer. The blend can be used to produce a conductive polymer film and/or a conductive-polymer composite film. In the present invention, a water-soluble self-acid-doped polyaniline derivative is blended with a water-soluble polymer to enhance the mechanical properties and the coating-to-substrate adhesion of the electric conductive polymer film or the electric conductive-polymer composite film, and increase the conductivity of the blender. In addition, the blend containing a water-soluble self-acid-doped polyaniline of the present invention is biotoxicity-free and has free radical-capture capability. Thus it can be used as a biocompatible and conductive biomedical material.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: December 11, 2012
    Assignee: Chang Gung University
    Inventors: Mu-Yi Hua, Hung-Wei Yang, Rung-Ywan Tsai, Ruey-Chi Hsu
  • Patent number: 8329222
    Abstract: A magnetic nanomedicine for tumor suppression and therapy, comprising: a core, made of magnetic nanoparticles; a shell, encapsulating said core and is made of carboxylated polyaniline (SPAnH); and a tumor suppression medicine Epirubicin (EPI) or Doxorubicin (DOX) covalently bonded onto said shell. Said magnetic nanomedicine is capable of improving its thermal stability, and it can be dissolved uniformly in water, plus its superparamagnetic property, thus it can be guided by an outside magnetic field to concentrate to the site of tumor distribution to increase the local medicine concentration and enhance therapy effect.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: December 11, 2012
    Assignee: Chang Gung University
    Inventors: Mu-Yi Hua, Hong-Wei Yang, Cheng-Keng Chuang, See-Tong Pang, Rung-Ywan Tsai, Kun-Lung Chuang
  • Patent number: 8304688
    Abstract: Apparatuses for fabricating micro patterns using a laser diode array and methods for fabricating micro patterns are presented. The apparatus includes a laser diode array having at least one laser diode wherein light emitted from each laser diode is focused by a convex lens onto a second material layer attached to a first material layer. At least one driving shaft drives motion of the first and the second material layers. An adjustment means is used for adjusting the gap and pitch between adjacent laser diodes.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: November 6, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Ying-Chi Chen, Rung-Ywan Tsai
  • Publication number: 20120261273
    Abstract: An electrode for an electrochemical device includes a conductor and an active layer. The active layer is formed on the conductor and includes a polymer with a functional group represented by the following formula (A) or (B), and a carboxylated material containing a carboxylic acid group.
    Type: Application
    Filed: May 29, 2012
    Publication date: October 18, 2012
    Applicant: Chang Gung University
    Inventors: Mu-Yi Hua, Hsiao-Chien Chen, Yaw-Terng Chern, Rung-Ywan Tsai, Shi-Liang Chen, Yan-Shium Chen
  • Publication number: 20120156100
    Abstract: The present invention directs to a detection apparatus for detecting the fluorescence signal emitting from a single and individual analyte molecule. By integrating the excitation light source, the detector array and the nanowell array all together within the detection apparatus, the single analyte molecule trapped in the nanowell can be excited by the light source and emits fluorescence signal to the detector array.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 21, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Rung-Ywan Tsai, Cheng-Wei Chu, Hsiu-Hsiang Chen
  • Publication number: 20120035333
    Abstract: A carboxylic polybenzimidazole includes at least one of the following functional group of formula (I): wherein G is a group containing a carboxylic acid end group or a carboxylated end group.
    Type: Application
    Filed: May 11, 2011
    Publication date: February 9, 2012
    Applicant: Chang Gung University
    Inventors: Mu-Yi Hua, Hsiao-Chien Chen, Rung-Ywan Tsai, Lee-Yih Wang
  • Publication number: 20120035334
    Abstract: A method for preparing a carboxylic polybenzimidazole includes reacting a polybenzimidazole polymer with a cyclic acid anhydride to form the carboxylic polybenzimidazole.
    Type: Application
    Filed: May 11, 2011
    Publication date: February 9, 2012
    Applicant: Chang Gung University
    Inventors: Mu-Yi Hua, Hsiao-Chien Chen, Rung-Ywan Tsai, Kong-Wei Cheng
  • Publication number: 20120031774
    Abstract: An electrode for an electrochemical device includes a conductor, and an active layer formed on the conductor and including a polybenzimidazole polymer that contains at least one of the functional group of the following formula:
    Type: Application
    Filed: May 11, 2011
    Publication date: February 9, 2012
    Applicant: Chang Gung University
    Inventors: Mu-Yi Hua, Hsiao-Chien Chen, Rung-Ywan Tsai, Kong-Wei Cheng
  • Publication number: 20110306143
    Abstract: An apparatus for detecting an object capable of emitting light. The apparatus includes a light source and a waveguide. The waveguide includes a core layer and a first cladding layer. At least one nanowell is formed in at least the first cladding layer. The apparatus further includes a light detector. The light detector can detect a light emitted from a single molecule object contained in the at least one nanowell.
    Type: Application
    Filed: July 29, 2010
    Publication date: December 15, 2011
    Inventors: Chung-Fan Chiou, Rung-Ywan Tsai, Yu-Tang Li, Chih-Tsung Shih, Ming-Chia Li, Chang-Sheng Chu, Shuang-Chao Chung, Jung-Po Chen, Ying-Chih Pu
  • Publication number: 20110306039
    Abstract: An apparatus for detecting an object capable of emitting light. The apparatus comprises a light source and a waveguide. The waveguide comprises a core layer and a first cladding layer. At least one nanowell is formed in at least the first cladding layer. The apparatus further comprises a light detector. The light detector can detect a light emitted from a single molecule object contained in the at least one nanowell.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 15, 2011
    Inventors: Chung-Fan Chiou, Rung-Ywan Tsai, Yu-Tang Li, Chih-Tsung Shih, Ming-Chia Li, Chang-Sheng Chu, Shuang-Chao Chung, Jung-Po Chen, Ying-Chih Pu