Patents by Inventor Runsheng Wang

Runsheng Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130017654
    Abstract: The invention discloses a fabrication method for a surrounding gate silicon nanowire transistor with air as spacers.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 17, 2013
    Inventors: Ru Huang, Jing Zhuge, Jiewen Fan, Yujie Ai, Runsheng Wang, Xin Huang
  • Publication number: 20130011980
    Abstract: The present invention discloses a fabrication method of a vertical silicon nanowire field effect transistor having a low parasitic resistance, which relates to a field of an ultra-large-integrated-circuit fabrication technology. As compared with a conventional planar field effect transistor, on one hand the vertical silicon nanowire field effect transistor fabricated by the present invention can provide a good ability for suppressing a short channel effect due to the excellent gate control ability caused by the one-dimensional structure, and reduce a leakage current and a drain-induced barrier lowering (DIBL). On the other hand, an area of the transistor is further reduced and an integration degree of an IC system is increased.
    Type: Application
    Filed: November 18, 2011
    Publication date: January 10, 2013
    Inventors: Ru Huang, Jiewen Fan, Yujie Ai, Shuai Sun, Runsheng Wang, Jibin Zou, Xin Huang
  • Publication number: 20120302014
    Abstract: A method for fabricating a surrounding-gate silicon nanowire transistor with air sidewalls is provided. The method is compatible with the CMOS process; the introduced air sidewalls can reduce the parasitic capacitance effectively and increase the transient response characteristic of the device, thus being applicable to a high-performance logic circuit.
    Type: Application
    Filed: July 4, 2011
    Publication date: November 29, 2012
    Inventors: Ru Huang, Jing Zhuge, Jiewen Fan, Yujie Ai, Runsheng Wang, Xin Huang
  • Publication number: 20120302027
    Abstract: Disclosed herein is a method for fabricating a silicon nanowire field effect transistor based on a wet etching.
    Type: Application
    Filed: November 18, 2011
    Publication date: November 29, 2012
    Inventors: Ru Huang, Jiewen Fan, Yujie Ai, Shuai Sun, Runsheng Wang, Jibin Zou, Xin Huang
  • Publication number: 20120264311
    Abstract: The present invention provides a surface treatment method for germanium based device. Through performing surface pretreatment to the germanium based device by using an aqueous solution of ammonium fluoride as a passivant, the interface state may be reduced, the formation of natural oxidation layer at the germanium surface may be inhibited, the regeneration of natural oxidation layer and the out-diffusion of the germanium based substrate material can be effectively inhibited, and the thermal stability of the metal germanide may also be increased significantly, so that the interface quality of the germanium based device is improved easily and effectively, which are advantageous to improve the performance of the germanium based transistor.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 18, 2012
    Applicant: PEKING UNIVERSITY
    Inventors: Xia An, Yue Guo, Runsheng Wang, Ru Huang, Xing Zhang
  • Patent number: 8288238
    Abstract: The present invention discloses a method for self-alignedly fabricating tunneling field-effect transistor (TFET) based on planar process, thereby lowering requirements on a photolithography process for fabricating the planar TFET. In the method, the source region and the drain region of the TFET are not directly defined by photolithography; rather, they are defined by another dielectric film which locates over an active region and on both sides of the gate and which is different from the dielectric film that defines the channel region. The influence due to the alignment deviation among three times of photolithography process for defining the channel region, the source and the drain regions may be eliminated by selectively removing the dielectric film over the source and drain regions by wet etching.
    Type: Grant
    Filed: September 25, 2010
    Date of Patent: October 16, 2012
    Assignee: Peking University
    Inventors: Ru Huang, Yujie Ai, Zhihua Hao, Chunhui Fan, Shuangshuang Pu, Runsheng Wang, Quanxin Yun
  • Publication number: 20120238097
    Abstract: Disclosed herein is a method for fabricating a fine line, which belongs to a field of ultra-large-scale integrated circuit manufacturing technology. In the invention, three trimming mask processes are performed to effectively improve a profile of the line and greatly reduce the LER (line edge roughness) of the line. At the same time, the invention is combined with a sidewall process, so that a nano-scaled fine line can be successfully fabricated and precisely controlled to 20 nm. Thus, a nano-scaled line with an optimized LER can be fabricated over the substrate.
    Type: Application
    Filed: September 29, 2011
    Publication date: September 20, 2012
    Inventors: Ru Huang, Shuangshuang Pu, Yujie Ai, Zhihua Hao, Runsheng Wang
  • Publication number: 20120199808
    Abstract: The present invention provides a high voltage-resistant lateral double-diffused transistor based on a nanowire device, which relates to the field of microelectronics semiconductor devices.
    Type: Application
    Filed: April 1, 2011
    Publication date: August 9, 2012
    Inventors: Ru Huang, Jibin Zou, Runsheng Wang, Gengyu Yang, Yujie Al, Jiewen Fan
  • Publication number: 20120190202
    Abstract: The present invention discloses a method for fabricating a semiconductor nano circular ring. In the method, firstly, a positive photoresist is coated on a semiconductor substrate, then the photoresist is exposed by using a circular mask with a micrometer-sized diameter to obtain the circular ring-shaped photoresist, based on the poisson diffraction principle. Then, a plasma etching is performed on the substrate under a protection of the circular ring-shaped photoresist to form a circular ring-shaped structure with a nano-sized wall thickness on a surface of the substrate. The embodiment of present invention fabricates a nano-sized circular ring-shaped structure by using a micrometer-sized lithography equipment and a micrometer-sized circular mask, and overcomes the dependence on advanced technologies, so as to effectively reduce the fabrication cost of the circular ring-shaped nano structure.
    Type: Application
    Filed: September 9, 2011
    Publication date: July 26, 2012
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Yujie Al, Zhihua Hao, Shuangshuang Pu, Jiewen Fan, Shuai Sun, Runsheng Wang, Xia An
  • Publication number: 20120187976
    Abstract: A method for testing trap density in a gate dielectric layer of a semiconductor device having no substrate contact is provided in the invention. A source and a drain of the device are bilateral symmetric, and probes and cables of a test instrument connecting to the source and the drain are bilateral symmetric. Firstly, bias settings at the gate, the source and the drain are controlled so that the device is under an initial state that an inversion layer is not formed and traps in the gate dielectric layer impose no confining effects on charges.
    Type: Application
    Filed: September 29, 2011
    Publication date: July 26, 2012
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Jibin Zou, Runsheng Wang, Jiewen Fan, Changze Liu, Yangyuan Wang
  • Publication number: 20120115297
    Abstract: The present invention discloses a method for self-alignedly fabricating tunneling field-effect transistor (TFET) based on planar process, thereby lowering requirements on a photolithography process for fabricating the planar TFET. In the method, the source region and the drain region of the TFET are not directly defined by photolithography; rather, they are defined by another dielectric film which locates over an active region and on both sides of the gate and which is different from the dielectric film that defines the channel region. The influence due to the alignment deviation among three times of photolithography process for defining the channel region, the source and the drain regions may be eliminated by selectively removing the dielectric film over the source and drain regions by wet etching.
    Type: Application
    Filed: September 25, 2010
    Publication date: May 10, 2012
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Yujie Ai, Zhihua Hao, Chunhui Fan, Shuangshuang Pu, Runsheng Wang, Quanxin Yun