Patents by Inventor Runzi Wang

Runzi Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230314273
    Abstract: An ultrahigh-temperature wind tunnel erosion testing system is provided, including a fuel system (1), an erosion system (2), an erosion spray gun (3), a test piece fixture (5) and a testing device; the erosion spray gun (3) is connected with the fuel system (1) and the erosion system (2) respectively; the erosion spray gun (3) is arranged on a lifting and rotating mechanism (4); the test piece fixture (5) is arranged on one side of the lifting and rotating mechanism (4) and is opposite to a nozzle of the erosion spray gun (3); and the testing device is connected with the test piece fixture (5). The plurality of groups of test pieces are circlewise arranged around the lifting and rotating mechanism (4).
    Type: Application
    Filed: August 4, 2022
    Publication date: October 5, 2023
    Inventors: Xiancheng ZHANG, Liqiang LIU, Jianping TAN, Runzi WANG, Shantung TU, Junmiao SHI
  • Publication number: 20230103274
    Abstract: The present invention discloses a multiaxial creep-fatigue prediction method based on ABAQUS, which comprises: S1: establishing an ABAQUS finite element model, and defining the viscoplastic constitutive equation of the material to be tested by means of the user subroutine UMAT; S2: determining the model parameters required by the viscoplastic constitutive equation; S3: establishing the fatigue damage calculation model and creep damage calculation model of the multiaxial stress-strain state of the material to be tested; S4: establishing an ABAQUS finite element model under the multiaxial stress-strain state, and calculating the stress-strain tensor of each cycle based on the defined viscoplastic constitutive equation and the model parameters; S5: calculating the equivalent stress and equivalent plastic strain by means of the user subroutine USDFLD, and superimposing the fatigue damage and creep damage of each cycle according to the linear cumulative damage criterion to obtain the crack initiation life of the m
    Type: Application
    Filed: October 31, 2019
    Publication date: March 30, 2023
    Inventors: Runzi Wang, Xiancheng Zhang, Sujuan Guo, Guangjian Yuan, Xumin Zhu, Shantung Tu
  • Publication number: 20220026326
    Abstract: The present invention discloses a multiaxial creep-fatigue prediction method based on ABAQUS, which comprises: S1: establishing an ABAQUS finite element model, and defining the viscoplastic constitutive equation of the material to be tested by means of the user subroutine UMAT; S2: determining the model parameters required by the viscoplastic constitutive equation; S3: establishing the fatigue damage calculation model and creep damage calculation model of the multiaxial stress-strain state of the material to be tested; S4: establishing an ABAQUS finite element model under the multiaxial stress-strain state, and calculating the stress-strain tensor of each cycle based on the defined viscoplastic constitutive equation and the model parameters; S5: calculating the equivalent stress and equivalent plastic strain by means of the user subroutine USDFLD, and superimposing the fatigue damage and creep damage of each cycle according to the linear cumulative damage criterion to obtain the crack initiation life of the m
    Type: Application
    Filed: October 31, 2019
    Publication date: January 27, 2022
    Inventors: Runzi Wang, Xiancheng Zhang, Sujuan Guo, Guangjian Yuan, Xumin Zhu, Shantung Tu