Patents by Inventor Russell G. Burge

Russell G. Burge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11933758
    Abstract: Methods and systems for monitoring microbial activity and microbial communication in an environment are disclosed. Exemplary methods include measuring a high impedance voltage between a reference electrode and one or more measurement electrodes to monitor microbial activity. Microorganisms form a biofilm that attaches to at least one of the one or more inert measurement electrodes and that allows for measuring the microbial activity, characterizing the environment, and/or monitoring microbial communication in the environment.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: March 19, 2024
    Inventors: Scott R. Burge, Russell G. Burge, David A. Hoffman
  • Patent number: 11635406
    Abstract: A microbial sensor, system, and method that can be used to determine a chemical environment and/or substrate concentrations in anaerobic or aerobic environments, such as soils, sediments and ground waters, are disclosed. An exemplary system uses one or more (e.g., inert) measurement electrodes and a reference electrode. The reference electrode can include an electrode exposed to atmospheric oxygen (e.g., a cathode) or an electrode exposed to stable anaerobic or aerobic conditions. The exemplary microbial sensor system measures open-circuit voltage to characterize the chemical (oxidizing or reducing) environment and/or recovery voltage to measure substrate concentrations in the subsurface.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: April 25, 2023
    Inventors: Scott R. Burge, Russell G. Burge, David A. Hoffman
  • Publication number: 20200333287
    Abstract: Methods and systems for monitoring microbial activity and microbial communication in an environment are disclosed. Exemplary methods include measuring a high impedance voltage between a reference electrode and one or more measurement electrodes to monitor microbial activity. Microorganisms form a biofilm that attaches to at least one of the one or more inert measurement electrodes and that allows for measuring the microbial activity, characterizing the environment, and/or monitoring microbial communication in the environment.
    Type: Application
    Filed: July 2, 2020
    Publication date: October 22, 2020
    Inventors: Scott R. Burge, Russell G. Burge, David A. Hoffman
  • Publication number: 20200256829
    Abstract: A microbial sensor, system, and method that can be used to determine a chemical environment and/or substrate concentrations in anaerobic or aerobic environments, such as soils, sediments and ground waters, are disclosed. An exemplary system uses one or more (e.g., inert) measurement electrodes and a reference electrode. The reference electrode can include an electrode exposed to atmospheric oxygen (e.g., a cathode) or an electrode exposed to stable anaerobic or aerobic conditions. The exemplary microbial sensor system measures open-circuit voltage to characterize the chemical (oxidizing or reducing) environment and/or recovery voltage to measure substrate concentrations in the subsurface.
    Type: Application
    Filed: April 14, 2020
    Publication date: August 13, 2020
    Inventors: Scott R. Burge, Russell G. Burge, David A. Hoffman
  • Patent number: 10656116
    Abstract: A microbial sensor, system, and method that can be used to determine a chemical environment and/or substrate concentrations in anaerobic or aerobic environments, such as soils, sediments and ground waters, are disclosed. An exemplary system uses one or more (e.g., inert) measurement electrodes and a reference electrode. The reference electrode can include an electrode exposed to atmospheric oxygen (e.g., a cathode) or an electrode exposed to stable anaerobic or aerobic conditions. The exemplary microbial sensor system measures open-circuit voltage to characterize the chemical (oxidizing or reducing) environment and/or recovery voltage to measure substrate concentrations in the subsurface.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: May 19, 2020
    Inventors: Scott R. Burge, Russell G. Burge, David A. Hoffman
  • Publication number: 20190011397
    Abstract: A microbial sensor, system, and method that can be used to determine a chemical environment and/or substrate concentrations in anaerobic or aerobic environments, such as soils, sediments and ground waters, are disclosed. An exemplary system uses one or more (e.g., inert) measurement electrodes and a reference electrode. The reference electrode can include an electrode exposed to atmospheric oxygen (e.g., a cathode) or an electrode exposed to stable anaerobic or aerobic conditions. The exemplary microbial sensor system measures open-circuit voltage to characterize the chemical (oxidizing or reducing) environment and/or recovery voltage to measure substrate concentrations in the subsurface.
    Type: Application
    Filed: September 7, 2018
    Publication date: January 10, 2019
    Inventors: Scott R. Burge, Russell G. Burge, David A. Hoffman
  • Patent number: 10113990
    Abstract: A microbial sensor, system, and method that can be used to determine a chemical environment and/or substrate concentrations in anaerobic or aerobic environments, such as soils, sediments and ground waters, are disclosed. An exemplary system uses one or more (e.g., inert) measurement electrodes and a reference electrode. The reference electrode can include an electrode exposed to atmospheric oxygen (e.g., a cathode) or an electrode exposed to stable anaerobic or aerobic conditions. The exemplary microbial sensor system measures open-circuit voltage to characterize the chemical (oxidizing or reducing) environment and/or recovery voltage to measure substrate concentrations in the subsurface.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: October 30, 2018
    Inventors: Scott R. Burge, Russell G. Burge, David A. Hoffman
  • Publication number: 20170045470
    Abstract: A microbial sensor, system, and method that can be used to determine a chemical environment and/or substrate concentrations in anaerobic or aerobic environments, such as soils, sediments and ground waters, are disclosed. An exemplary system uses one or more (e.g., inert) measurement electrodes and a reference electrode. The reference electrode can include an electrode exposed to atmospheric oxygen (e.g., a cathode) or an electrode exposed to stable anaerobic or aerobic conditions. The exemplary microbial sensor system measures open-circuit voltage to characterize the chemical (oxidizing or reducing) environment and/or recovery voltage to measure substrate concentrations in the subsurface.
    Type: Application
    Filed: August 15, 2016
    Publication date: February 16, 2017
    Inventors: Scott R. Burge, Russell G. Burge, David A. Hoffman