Patents by Inventor Russell J. BONAVENTURA

Russell J. BONAVENTURA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11523735
    Abstract: A headrest for an ophthalmic instrument facilitates fine positioning of the instrument relative to an eye of a test subject without the need to remove a contact element of the headrest from contact with the test subject's face. The ophthalmic instrument may be, for example, a rebound tonometer or a non-contact tonometer. The headrest includes a hollow bulbous contact element formed of resiliently deformable material, for example a thermoplastic elastomer (TPE) or silicone rubber. An outer surface of the contact element may have a spherical shape or a spheroidal shape when the contact element is not deformed.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: December 13, 2022
    Assignee: Reichert, Inc.
    Inventors: Russell J. Bonaventura, James M. Schweitzer
  • Patent number: 11219367
    Abstract: A spatially compact, lightweight positioning system for guiding an operator in positioning an ophthalmic instrument relative to an eye of a test subject has first and second light sources and an area detector spaced apart from a measurement axis of the instrument and from each other for providing positioning images which may be evaluated relative to stored calibration image information to determine current position of the instrument relative to the eye. The first and second light sources may fit within a lateral distance less than or equal to 25 mm. First and second illumination axes associated with the light sources may reside in a horizontal plane containing the measurement axis, and an observation axis of the area detector may reside in a vertical plane containing the measurement axis. The light sources and the area detector may be intersected by a plane which is normal to the measurement axis.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: January 11, 2022
    Assignee: Reichert, Inc.
    Inventors: Scott W. Parks, David G. Kelkenberg, Russell J. Bonaventura
  • Publication number: 20210378503
    Abstract: A headrest for an ophthalmic instrument facilitates fine positioning of the instrument relative to an eye of a test subject without the need to remove a contact element of the headrest from contact with the test subject's face. The ophthalmic instrument may be, for example, a rebound tonometer or a non-contact tonometer. The headrest includes a hollow bulbous contact element formed of resiliently deformable material, for example a thermoplastic elastomer (TPE) or silicone rubber. An outer surface of the contact element may have a spherical shape or a spheroidal shape when the contact element is not deformed.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 9, 2021
    Inventors: Russell J. BONAVENTURA, James M. SCHWEITZER
  • Patent number: 11096575
    Abstract: A docking station for receiving a hand-held rebound tonometer and a probe container carrying disposable tonometer probes has a docking cavity for receiving a portion of the rebound tonometer and a container receptacle for receiving the probe container. The docking station has an actuation feature arranged to move a cover associated with the probe container from a closed position to an open position as the container is inserted into the container receptacle so that tonometer probes in the container are accessible. The actuation feature may include a projection extending into an entryway leading to the container receptacle for engaging the cover but not the container, such that further insertion of the container moves the cover from the closed to the open position. The docking station may also have a storage recess for receiving an empty probe tube and cap after the probe has been removed from the tube for use.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: August 24, 2021
    Assignee: Reichert, Inc.
    Inventors: James M. Schweitzer, Russell J. Bonaventura, David A. Taylor
  • Publication number: 20210235988
    Abstract: A spatially compact, lightweight positioning system for guiding an operator in positioning an ophthalmic instrument relative to an eye of a test subject has first and second light sources and an area detector spaced apart from a measurement axis of the instrument and from each other for providing positioning images which may be evaluated relative to stored calibration image information to determine current position of the instrument relative to the eye. The first and second light sources may fit within a lateral distance less than or equal to 25 mm. First and second illumination axes associated with the light sources may reside in a horizontal plane containing the measurement axis, and an observation axis of the area detector may reside in a vertical plane containing the measurement axis. The light sources and the area detector may be intersected by a plane which is normal to the measurement axis.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 5, 2021
    Inventors: Scott W. PARKS, David G. KELKENBERG, Russell J. BONAVENTURA
  • Publication number: 20200390331
    Abstract: A docking station for receiving a hand-held rebound tonometer and a probe container carrying disposable tonometer probes has a docking cavity for receiving a portion of the rebound tonometer and a container receptacle for receiving the probe container. The docking station has an actuation feature arranged to move a cover associated with the probe container from a closed position to an open position as the container is inserted into the container receptacle so that tonometer probes in the container are accessible. The actuation feature may include a projection extending into an entryway leading to the container receptacle for engaging the cover but not the container, such that further insertion of the container moves the cover from the closed to the open position. The docking station may also have a storage recess for receiving an empty probe tube and cap after the probe has been removed from the tube for use.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 17, 2020
    Inventors: James M. SCHWEITZER, Russell J. BONAVENTURA, David A. TAYLOR
  • Patent number: 10786151
    Abstract: An ophthalmic instrument includes a carrier positionable relative to a test subject, and first and second measurement units mounted on the carrier by corresponding first and second parallelogram linkages. The first measurement unit, for example an autorefractor/keratometer, performs a first type of ophthalmic measurement, and is guided by the first parallelogram linkage to move relative to the carrier simultaneously in forward and downward directions from an idle position to a measurement position. The second measurement unit, for example a tonometer, performs a second type of ophthalmic measurement, and is guided by the second parallelogram linkage to move relative to the carrier simultaneously in forward and upward directions from an idle position to a measurement position. The first and second measurement units may each have a respective optical axis which aligns with a fixed measurement axis of the carrier when the measurement unit is in its measurement position.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: September 29, 2020
    Assignee: Reichert, Inc.
    Inventors: David L. Beverly, Russell J. Bonaventura
  • Publication number: 20200046221
    Abstract: An ophthalmic instrument includes a carrier positionable relative to a test subject, and first and second measurement units mounted on the carrier by corresponding first and second parallelogram linkages. The first measurement unit, for example an autorefractor/keratometer, performs a first type of ophthalmic measurement, and is guided by the first parallelogram linkage to move relative to the carrier simultaneously in forward and downward directions from an idle position to a measurement position. The second measurement unit, for example a tonometer, performs a second type of ophthalmic measurement, and is guided by the second parallelogram linkage to move relative to the carrier simultaneously in forward and upward directions from an idle position to a measurement position. The first and second measurement units may each have a respective optical axis which aligns with a fixed measurement axis of the carrier when the measurement unit is in its measurement position.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 13, 2020
    Inventors: David L. BEVERLY, Russell J. BONAVENTURA