Patents by Inventor Russell J. Hannigan

Russell J. Hannigan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11367936
    Abstract: The present technology pertains to a system and method of operation of a metamaterial phase shifter having various use applications. In one aspect of the present disclosure, a phase shifter includes a network of tunable impedance elements and a controller. The controller is coupled to the network of tunable impedance elements and configured to receive a phase shift input value and determine a corresponding tuning voltage to be supplied to each tunable impedance element of the network of tunable impedance elements based on the phase shift input value, the network of tunable impedance element being configured to shift a phase of an input signal based on tuning voltages supplied to the network of tunable impedance elements by the controller.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: June 21, 2022
    Assignee: The Invention Science Fund I LLC
    Inventors: Yaroslav A. Urzhumov, Matthew S. Reynolds, Guy S. Lipworth, Russell J. Hannigan, Daniel Arnitz, Joseph Hagerty
  • Patent number: 11183887
    Abstract: System and methods are described herein for providing wireless power to a target device, such as a laptop computer, a mobile phone, a vehicle, robot, or an unmanned aerial vehicle or system (UAV) or (UAS). A tunable multi-element transmitter may transmit electromagnetic radiation (EMR) to the target device using any of a wide variety of frequency bands. A location determination subsystem and/or range determination subsystem may determine a relative location, orientation, and/or rotation of the target device. For a target device within a distance range for which a smallest achievable waist of the Gaussian beam of the EMR at an operational frequency is smaller than the multi-element EMR receiver of the target device, a non-Gaussian beamform may be determined to increase efficiency, decrease overheating, reduce spillover, increase total power output of rectenna receivers on the target device, or achieve another target power delivery goal.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: November 23, 2021
    Assignee: Searete LLC
    Inventors: Daniel Arnitz, Jeffrey A. Bowers, Joseph A. Hagerty, Russell J. Hannigan, Guy S. Lipworth, David R. Nash, Matthew S. Reynolds, Clarence T. Tegreene, Yaroslav A. Urzhumov
  • Publication number: 20210126330
    Abstract: The present technology pertains to a system and method of operation of a metamaterial phase shifter having various use applications. In one aspect of the present disclosure, a phase shifter includes a network of tunable impedance elements and a controller. The controller is coupled to the network of tunable impedance elements and configured to receive a phase shift input value and determine a corresponding tuning voltage to be supplied to each tunable impedance element of the network of tunable impedance elements based on the phase shift input value, the network of tunable impedance element being configured to shift a phase of an input signal based on tuning voltages supplied to the network of tunable impedance elements by the controller.
    Type: Application
    Filed: November 9, 2020
    Publication date: April 29, 2021
    Inventors: Yaroslav A. Urzhumov, Matthew S. Reynolds, Guy S. Lipworth, Russell J. Hannigan, Daniel Arnitz, Joseph Hagerty
  • Patent number: 10958108
    Abstract: Described embodiments include a system and method. A system includes a tracking circuit configured to determine a location of a target device within a Fresnel region of an electronically reconfigurable beam-forming antenna. The antenna is configured to implement at least two selectable focused electromagnetic beams within its Fresnel region. The system includes a beam selector circuit configured to select from the at least two selectable focused electromagnetic beams a focused electromagnetic beam having a focal spot that covers at least a portion of the determined location of the target device. The system includes a beam definition circuit configured to determine an electromagnetic field distribution over an aperture of the electronically reconfigurable beam-forming antenna implementing the selected focused electromagnetic beam. The system includes an output circuit configured to transmit a signal indicative of the determined electromagnetic field distribution.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: March 23, 2021
    Assignee: Searete LLC
    Inventors: Russell J. Hannigan, Guy Shlomo Lipworth, Matthew S. Reynolds, Yaroslav A. Urzhumov
  • Patent number: 10938249
    Abstract: Systems and methods are provided for various tunable multi-timescale wireless rectification systems. Tunable multi-timescale wireless rectification systems may include multiple feedback control loops, systems, or sub-systems that modify characteristics of components of a wireless rectification system on various timescales. A wireless rectification system may include antennas, impedance-matching components, rectifying devices, DC-to-DC converters, and/or load controllers. Two or more feedback controls may function on different timescales to modify one or more characteristics or functionalities of components of the wireless rectification system in response to monitored AC and/or DC power values at various locations within the wireless rectification system. Feedback controls operating on various timescales may include antenna feedback controls, impedance feedback controls, rectifying feedback controls, and/or DC feedback controls.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: March 2, 2021
    Assignee: Searete LLC
    Inventors: Daniel Arnitz, Lawrence F. Arnstein, Jeffrey A. Bowers, Joseph A. Hagerty, Russell J. Hannigan, Guy S. Lipworth, David R. Nash, Matthew S. Reynolds, Clarence T. Tegreene, Yaroslav A. Urzhumov
  • Patent number: 10833381
    Abstract: The present technology pertains to a system and method of operation of a metamaterial phase shifter having various use applications. In one aspect of the present disclosure, a phase shifter includes a network of tunable impedance elements and a controller. The controller is coupled to the network of tunable impedance elements and configured to receive a phase shift input value and determine a corresponding tuning voltage to be supplied to each tunable impedance element of the network of tunable impedance elements based on the phase shift input value, the network of tunable impedance element being configured to shift a phase of an input signal based on tuning voltages supplied to the network of tunable impedance elements by the controller.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: November 10, 2020
    Assignee: The Invention Science Fund I LLC
    Inventors: Yaroslav A. Urzhumov, Matthew S. Reynolds, Guy S. Lipworth, Russell J. Hannigan, Daniel Arnitz, Joseph Hagerty
  • Publication number: 20200313466
    Abstract: System and methods are described herein for providing wireless power to a target device, such as a laptop computer, a mobile phone, a vehicle, robot, or an unmanned aerial vehicle or system (UAV) or (UAS). A tunable multi-element transmitter may transmit electromagnetic radiation (EMR) to the target device using any of a wide variety of frequency bands. A location determination subsystem and/or range determination subsystem may determine a relative location, orientation, and/or rotation of the target device. For a target device within a distance range for which a smallest achievable waist of the Gaussian beam of the EMR at an operational frequency is smaller than the multi-element EMR receiver of the target device, a non-Gaussian beamform may be determined to increase efficiency, decrease overheating, reduce spillover, increase total power output of rectenna receivers on the target device, or achieve another target power delivery goal.
    Type: Application
    Filed: April 13, 2020
    Publication date: October 1, 2020
    Inventors: Daniel Arnitz, Jeffrey A. Bowers, Joseph A. Hagerty, Russell J. Hannigan, Guy S. Lipworth, David R. Nash, Matthew S. Reynolds, Clarence T. Tegreene, Yaroslav A. Urzhumov
  • Patent number: 10686236
    Abstract: According to various embodiments, a quadrature hybrid coupler included as part of a phase shifter is used to provide variable phase shift to an input signal. The quadrature hybrid coupler includes an input port, an output port, and two terminated ports. The phase shifter includes one or more static lumped elements connected to the QHC to reduce at least one electrical dimension of the QHC to substantially less than a quarter wavelength. The phase shifter also include one or more variable lumped elements connected to the QHC to provide a variable phase shift to the input signal between the input port and the output port of the QHC.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 16, 2020
    Assignee: The Invention Science Fund I, LLC
    Inventors: Daniel Arnitz, Joseph Hagerty, Russell J. Hannigan, Guy S. Lipworth, Matthew S. Reynolds, Yaroslav A. Urhumov
  • Publication number: 20200119591
    Abstract: Systems and methods are provided for various tunable multi-timescale wireless rectification systems. Tunable multi-timescale wireless rectification systems may include multiple feedback control loops, systems, or sub-systems that modify characteristics of components of a wireless rectification system on various timescales. A wireless rectification system may include antennas, impedance-matching components, rectifying devices, DC-to-DC converters, and/or load controllers. Two or more feedback controls may function on different timescales to modify one or more characteristics or functionalities of components of the wireless rectification system in response to monitored AC and/or DC power values at various locations within the wireless rectification system. Feedback controls operating on various timescales may include antenna feedback controls, impedance feedback controls, rectifying feedback controls, and/or DC feedback controls.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Inventors: Daniel Arnitz, Lawrence F. Arnstein, Jeffrey A. Bowers, Joseph A. Hagerty, Russell J. Hannigan, Guy S. Lipworth, David R. Nash, Matthew S. Reynolds, Clarence T. Tegreene, Yaroslav A. Urzhumov
  • Patent number: 10622845
    Abstract: System and methods are described herein for providing wireless power to a target device, such as a laptop computer, a mobile phone, a vehicle, robot, or an unmanned aerial vehicle or system (UAV) or (UAS). A tunable multi-element transmitter may transmit electromagnetic radiation (EMR) to the target device using any of a wide variety of frequency bands. A location determination subsystem and/or range determination subsystem may determine a relative location, orientation, and/or rotation of the target device. For a target device within a distance range for which a smallest achievable waist of the Gaussian beam of the EMR at an operational frequency is smaller than the multi-element EMR receiver of the target device, a non-Gaussian beamform may be determined to increase efficiency, decrease overheating, reduce spillover, increase total power output of rectenna receivers on the target device, or achieve another target power delivery goal.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: April 14, 2020
    Assignee: Searete LLC
    Inventors: Daniel Arnitz, Jeffrey A. Bowers, Joseph A. Hagerty, Russell J. Hannigan, Guy S. Lipworth, David R. Nash, Matthew S. Reynolds, Clarence T. Tegreene, Yaroslav A. Urzhumov
  • Patent number: 10602373
    Abstract: Holographic beamforming antennas may be utilized for adaptive routing within communications networks, such as wireless backhaul networks. Holographic beamforming antennas may be further utilized for discovering and/or addressing nodes in a communication network with steerable, high-directivity beams. Holographic beamforming antennas may be further utilized for extending the range of communications nodes and providing bandwidth assistance to adjacent nodes via dynamic adjacent cell assist. In some approaches, MIMO is used in concert with holographic beamforming for additional channel capacity.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: March 24, 2020
    Assignee: The Invention Science Fund I, LLC
    Inventors: Eric J. Black, Brian Mark Deutsch, Russell J. Hannigan, Alexander Remley Katko, Melroy Machado, Jay Howard McCandless, Yaroslav A. Urzhumov
  • Patent number: 10595210
    Abstract: Holographic beamforming antennas may be utilized for adaptive routing within communications networks, such as wireless backhaul networks. Holographic beamforming antennas may be further utilized for discovering and/or addressing nodes in a communication network with steerable, high-directivity beams. Holographic beamforming antennas may be further utilized for extending the range of communications nodes and providing bandwidth assistance to adjacent nodes via dynamic adjacent cell assist. In some approaches, MIMO is used in concert with holographic beamforming for additional channel capacity.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: March 17, 2020
    Assignee: The Invention Science Fund I, LLC
    Inventors: Eric J. Black, Brian Mark Deutsch, Russell J. Hannigan, Alexander Remley Katko, Melroy Machado, Jay Howard McCandless, Yaroslav A. Urzhumov
  • Patent number: 10530194
    Abstract: According to various embodiments, a non-linear RF receiver including non-linear components is configured to receive RF energy. The non-linear RF receiver is coupled to an array of RF antennas having configuration parameters that vary across the array. The varied configuration parameters can be selected to reduce an amount of RF energy that is scatter, reflected, or re-radiated by the array in response to incident RF energy at the array of RF antennas. In various embodiments, the non-linear components of the non-linear RF receiver can have non-linear component configuration parameters that vary across the non-linear receiver. The varied non-linear component parameters can be selected to reduce an amount of RF energy that is re-radiated in response to incident RF energy.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: January 7, 2020
    Assignee: The Invention Science Fund I LLC
    Inventors: Daniel Arnitz, Joseph Hagerty, Russell J. Hannigan, Guy S. Lipworth, Matthew S. Reynolds, Yaroslav A. Urzhumov
  • Patent number: 10425837
    Abstract: In one embodiment, a source device includes one or more tunable elements associated with an antenna. The source device is operable to modulate an impedance of one or more tunable elements based on a sequence of tuning vectors, measure a reference signal amplitude for each tuning vector, and determine field amplitudes for an array of reference points that circumscribe at least a portion of the source device based on the reference signal amplitude for each tuning vector. The source device is further operable to determine a target tuning vector that defines a target radiation pattern based on the field amplitudes, and transmit a target signal to a target device based on the target radiation pattern.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: September 24, 2019
    Assignee: The Invention Science Fund I, LLC
    Inventors: Yaroslav A. Urzhumov, Matthew S. Reynolds, Guy S. Lipworth, Russell J. Hannigan, Daniel Arnitz, Joseph Hagerty
  • Patent number: 10389179
    Abstract: Described embodiments include a system and method. An antenna is configured to implement at least two selectable radiative electromagnetic field spatial distributions. Each selectable radiative electromagnetic field spatial distributions respectively has a bounding surface that describes a specified power density in the radiative electromagnetic field. A sensor circuit is configured to detect a presence of an object within the bounding surface of an implemented radiative electromagnetic field. A countermeasure circuit is configured to select a response to the detected presence of the object within the bounding surface of the implemented radiative electromagnetic field.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: August 20, 2019
    Assignee: The Invention Science Fund I, LLC
    Inventors: Russell J. Hannigan, Guy Shlomo Lipworth, Matthew S. Reynolds, Yaroslav A. Urzhumov
  • Publication number: 20190215948
    Abstract: According to various embodiments, heat can be dissipated from a heat producing component mounted on a first side of a printed circuit board through a securing post extending out of the first side of the printed circuit board. The securing post can be configured to attach to a heat sink through a fastening mechanism. Subsequently, the securing post can transfer heat received from the heat producing component to the heat sink as part of dissipating the heat from the heat product component. The securing post can receive heat from the heat producing component through a printed circuit board heat transfer path integrated as part of the printed circuit board. The heat transfer path can include one or more thermal vias and one or more thermally conductive layers used to transfer the heat from the heat producing component to the securing post.
    Type: Application
    Filed: January 9, 2018
    Publication date: July 11, 2019
    Inventors: Daniel Arnitz, Joseph Hagerty, Russell J. Hannigan, Guy S. Lipworth, David R. Nash, Matthew S. Reynolds, Yaroslav A. Urzhumov
  • Publication number: 20190181523
    Abstract: According to various embodiments, a quadrature hybrid coupler included as part of a phase shifter is used to provide variable phase shift to an input signal. The quadrature hybrid coupler includes an input port, an output port, and two terminated ports. The phase shifter includes one or more static lumped elements connected to the QHC to reduce at least one electrical dimension of the QHC to substantially less than a quarter wavelength. The phase shifter also include one or more variable lumped elements connected to the QHC to provide a variable phase shift to the input signal between the input port and the output port of the QHC.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Daniel Arnitz, Joseph Hagerty, Russell J. Hannigan, Guy S. Lipworth, Matthew S. Reynolds, Yaroslav A. Urhumov
  • Publication number: 20190181696
    Abstract: According to various embodiments, a non-linear RF receiver including non-linear components is configured to receive RF energy. The non-linear RF receiver is coupled to an array of RF antennas having configuration parameters that vary across the array. The varied configuration parameters can be selected to reduce an amount of RF energy that is scatter, reflected, or re-radiated by the array in response to incident RF energy at the array of RF antennas. In various embodiments, the non-linear components of the non-linear RF receiver can have non-linear component configuration parameters that vary across the non-linear receiver. The varied non-linear component parameters can be selected to reduce an amount of RF energy that is re-radiated in response to incident RF energy.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Daniel Arnitz, Joseph Hagerty, Russell J. Hannigan, Guy S. Lipworth, Matthew S. Reynolds, Yaroslav A. Urzhumov
  • Patent number: 10320084
    Abstract: Surface scattering antennas provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the scattering elements are complementary metamaterial elements. In some approaches, the scattering elements are made adjustable by disposing an electrically adjustable material, such as a liquid crystal, in proximity to the scattering elements. Methods and systems provide control and adjustment of surface scattering antennas for various applications.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: June 11, 2019
    Inventors: Adam Bily, Anna K. Boardman, Russell J. Hannigan, John Desmond Hunt, Nathan Kundtz, David R. Nash, Ryan Allan Stevenson, Philip A. Sullivan
  • Publication number: 20190173324
    Abstract: System and methods are described herein for providing wireless power to a target device, such as a laptop computer, a mobile phone, a vehicle, robot, or an unmanned aerial vehicle or system (UAV) or (UAS). A tunable multi-element transmitter may transmit electromagnetic radiation (EMR) to the target device using any of a wide variety of frequency bands. A location determination subsystem and/or range determination subsystem may determine a relative location, orientation, and/or rotation of the target device. For a target device within a distance range for which a smallest achievable waist of the Gaussian beam of the EMR at an operational frequency is smaller than the multi-element EMR receiver of the target device, a non-Gaussian beamform may be determined to increase efficiency, decrease overheating, reduce spillover, increase total power output of rectenna receivers on the target device, or achieve another target power delivery goal.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 6, 2019
    Inventors: Daniel Arnitz, Jeffrey A. Bowers, Joseph A. Hagerty, Russell J. Hannigan, Guy S. Lipworth, David R. Nash, Matthew S. Reynolds, Clarence T. Tegreene, Yaroslav A. Urzhumov