Patents by Inventor Russell J. Low

Russell J. Low has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090147435
    Abstract: An apparatus and method for trapping particles in a housing is disclosed. A high voltage terminal/structure is situated within a housing. A conductive material, having a plurality of holes, such as a mesh, is disposed a distance away from an interior surface of the housing, such as the floor of the housing, forming a particle trap. The conductive mesh is biased so that the electrical field within the trap is either non-existent or pushing toward the floor, so as to retain particles within the trap. Additionally, a particle mover, such as a fan or mechanical vibration device, can be used to urge particles into the openings in the mesh. Furthermore, a conditioning phase may be used prior to operating the high voltage terminal, whereby a voltage is applied to the conductive mesh so as to attract particles toward the particle trap.
    Type: Application
    Filed: December 4, 2008
    Publication date: June 11, 2009
    Inventors: Stephen E. Krause, Russell J. Low, Kasegn D. Tekletsadik
  • Publication number: 20090145228
    Abstract: Techniques for reducing an electrical stress in a acceleration/deceleration system are disclosed. In one particular exemplary embodiment, the techniques may be realized as an acceleration/deceleration system. The acceleration/deceleration system may comprise an acceleration column including a plurality of electrodes having apertures through which a charged particle beam may pass. The acceleration/deceleration system may also comprise a plurality of voltage grading components respectively electrically coupled to the plurality of electrodes. The acceleration/deceleration system may further comprise a plurality of insulated conductors disposed proximate the plurality of voltage grading components to modify an electrical field about the plurality of voltage grading components.
    Type: Application
    Filed: January 2, 2008
    Publication date: June 11, 2009
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kasegn D. TEKLETSADIK, Russell J. LOW
  • Patent number: 7528391
    Abstract: Techniques for reducing contamination during ion implantation is disclosed. In one particular exemplary embodiment, the techniques may be realized by an apparatus for reducing contamination during ion implantation. The apparatus may comprise a platen to hold a workpiece for ion implantation by an ion beam. The apparatus may also comprise a mask, located in front of the platen, to block the ion beam and at least a portion of contamination ions from reaching a first portion of the workpiece during ion implantation of a second portion of the workpiece. The apparatus may further comprise a control mechanism, coupled to the platen, to reposition the workpiece to expose the first portion of the workpiece for ion implantation.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: May 5, 2009
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Russell J. Low
  • Publication number: 20090085504
    Abstract: Techniques for controlling a charged particle beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as a charged particle acceleration/deceleration system. The charged particle acceleration/deceleration system may comprise an accelerator column, which may comprise a plurality of electrodes. The plurality of electrodes may have apertures through which a charged particle beam may pass. The charged particle acceleration/deceleration system may also comprise a voltage grading system. The voltage grading system may comprise a first fluid reservoir and a first fluid circuit. The first fluid circuit may have conductive connectors connecting to at least one of the plurality of electrodes. The voltage grading system may further comprise fluid in the first fluid circuit. The fluid may have an electrical resistance.
    Type: Application
    Filed: October 1, 2007
    Publication date: April 2, 2009
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Piotr R. Lubicki, Russell J. Low, Stephen E. Krause, Frank Sinclair
  • Publication number: 20090078554
    Abstract: Techniques for making high voltage connections are disclosed. In one particular exemplary embodiment, the techniques may be realized as an electrical switch. The electrical switch may comprise a component extending from a first electrical contact to a second electrical contact. The component may also comprise a non-conductive section and a conductive section. In a first mode of operation, at least a portion of the non-conductive section may be positioned between the two electrical contacts to insulate the two electrical contacts. In a second mode of operation, the conductive section may be positioned between the two electrical contacts to connect the two electrical contacts.
    Type: Application
    Filed: September 26, 2007
    Publication date: March 26, 2009
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Douglas E. May, Kasegn D. Tekletsadik, Eric Hermanson, Piotr R. Lubicki, Russell J. Low, Joseph C. Olson, Stephen E. Krause
  • Publication number: 20090072163
    Abstract: Techniques for controlling a charged particle beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as a charged particle acceleration/deceleration system. The charged particle acceleration/deceleration system may comprise an acceleration column. The acceleration column may comprise a plurality of electrodes having apertures through which a charged particle beam may pass. The charged particle acceleration/deceleration system may also comprise a plurality of resistors electrically coupled to the plurality of electrodes. The charged particle acceleration/deceleration system may further comprise a plurality of switches electrically coupled to the plurality of electrodes and the plurality of resistors, each of the plurality of switches may be configured to be selectively switched respectively in a plurality of operation modes.
    Type: Application
    Filed: September 13, 2007
    Publication date: March 19, 2009
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Piotr R. Lubicki, Russell J. Low, Joseph C. Olson, Anthony Renau
  • Publication number: 20090050347
    Abstract: Insulated conducting devices and related methods are disclosed. An insulated conducting device for a voltage structure comprises: a conductor connected to a voltage; and multiple insulation segments enclosing the conductor, the multiple insulation segments interfacing with one another.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 26, 2009
    Inventors: Kasegn D. Tekletsadik, Steve Krause, Eric Hermanson, Russell J. Low
  • Publication number: 20090047801
    Abstract: Methods of interfacing parts in a high voltage environment and related structures are disclosed. A method comprises: providing an insulation medium between a first part and a second part in a high voltage environment; and interfacing the first part and the second part by compressing the first part and the second part against the insulation medium.
    Type: Application
    Filed: August 14, 2007
    Publication date: February 19, 2009
    Inventors: Russell J. Low, Kasegn D. Tekletsadik, Anthony Renau, Piotr R. Lubicki, D. Jeffrey Lischer, Steve Krause, Eric Hermanson, Doug E. May
  • Patent number: 7491947
    Abstract: A technique improving performance and lifetime of indirectly heated cathode ion sources is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for improving performance and lifetime of an indirectly heated cathode (IHC) ion source in an ion implanter. The method may comprise maintaining an arc chamber of the IHC ion source under vacuum during a maintenance of the ion implanter, wherein no gas is supplied to the arc chamber. The method may also comprise heating a cathode of the IHC ion source by supplying a filament with a current. The method may further comprise biasing the cathode with respect to the filament at a current level of 0.5-5 A without biasing the arc chamber with respect to the cathode. The method additionally comprise keeping a source magnet from producing a magnetic field inside the arc chamber.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: February 17, 2009
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Eric R. Cobb, Russell J. Low, Craig R. Chaney, Leo V. Klos
  • Patent number: 7482598
    Abstract: Techniques for preventing parasitic beamlets from affecting ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for preventing parasitic beamlets from affecting ion implantation. The apparatus may comprise a controller that is configured to scan a spot beam back and forth, thereby forming an ion beam spanning a predetermined width. The apparatus may also comprise an aperture mechanism that, if kept stationary, allows the spot beam to pass through. The apparatus may further comprise a synchronization mechanism, coupled to the controller and the aperture mechanism, that is configured to cause the aperture mechanism to move in synchronization with the scanned spot beam, allowing the scanned spot beam to pass through but blocking one or more parasitic beamlets associated with the spot beam.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: January 27, 2009
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Russell J. Low, Jonathan Gerald England, Stephen E. Krause, Eric D. Hermanson
  • Patent number: 7476878
    Abstract: Techniques for reducing effects of photoresist outgassing are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for reducing effects of photoresist outgassing in an ion implanter. The apparatus may comprise a drift tube located between an end-station and an upstream beamline component. The apparatus may also comprise a first variable aperture between the drift tube and the end-station. The apparatus may further comprise a second variable aperture between the drift tube and the upstream beamline component. The first variable aperture and the second variable aperture can be adjusted to facilitate differential pumping.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: January 13, 2009
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Russell J. Low, Jonathan Gerald England, Stephen E. Krause, Eric D. Hermanson
  • Patent number: 7476877
    Abstract: A charge monitoring system may include a platen having a surface configured to accept a wafer thereon, and a charge monitor disposed relative to the platen so that an ion beam simultaneously strikes a portion of the charge monitor and a portion of the wafer. The charge monitor is configured to provide a charge monitor signal representative of a charge on a surface of the wafer when the ion beam simultaneously strikes the portion of the charge monitor and the portion of the wafer. The charge monitor signal may depend, at least in part, on a beam potential of the ion beam.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: January 13, 2009
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Russell J. Low, George M. Gammel, Peter F. Kurunczi, Eric Cobb
  • Patent number: 7459704
    Abstract: Ion sources and methods for generating molecular ions in a cold operating mode and for generating atomic ions in a hot operating mode are provided. In some embodiments, first and second electron sources are located at opposite ends of an arc chamber. The first electron source is energized in the cold operating mode, and the second electron source is energized in the hot operating mode. In other embodiments, electrons are directed through a hole in a cathode in the cold operating mode and are directed at the cathode in the hot operating mode. In further embodiments, an ion beam generator includes a molecular ion source, an atomic ion source and a switching element to select the output of one of the ion sources.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: December 2, 2008
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Joseph C. Olson, Anthony Renau, Donna L. Smatlak, Kurt Deckerlucke, Paul Murphy, Alexander S. Perel, Russell J. Low, Peter Kurunczi
  • Patent number: 7446326
    Abstract: A technique for improving ion implanter productivity is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for improving productivity of an ion implanter having an ion source chamber. The method may comprise supplying a gaseous substance to the ion source chamber, the gaseous substance comprising one or more reactive species for generating ions for the ion implanter. The method may also comprise stopping the supply of the gaseous substance to the ion source chamber. The method may further comprise supplying a hydrogen containing gas to the ion source chamber for a period of time after stopping the supply of the gaseous substance.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 4, 2008
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Craig R. Chaney, Russell J. Low, Jonathan Gerald England
  • Publication number: 20080149856
    Abstract: Techniques for reducing contamination during ion implantation is disclosed. In one particular exemplary embodiment, the techniques may be realized by an apparatus for reducing contamination during ion implantation. The apparatus may comprise a platen to hold a workpiece for ion implantation by an ion beam. The apparatus may also comprise a mask, located in front of the platen, to block the ion beam and at least a portion of contamination ions from reaching a first portion of the workpiece during ion implantation of a second portion of the workpiece. The apparatus may further comprise a control mechanism, coupled to the platen, to reposition the workpiece to expose the first portion of the workpiece for ion implantation.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Russell J. LOW
  • Publication number: 20080105828
    Abstract: Techniques for removing molecular fragments from an ion implanter are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for removing molecular fragments from an ion implanter. The apparatus may comprise a supply mechanism configured to couple to an ion source chamber and to supply a feed material to the ion source chamber. The apparatus may also comprise one or more hydrogen-absorbing materials placed in a flow path of the feed material, to prevent at least one portion of hydrogen-containing molecular fragments in the feed material from entering the ion source chamber.
    Type: Application
    Filed: April 11, 2007
    Publication date: May 8, 2008
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Christopher R. HATEM, Jay Thomas SCHEUER, Russell J. LOW, Morgan D. Evans, Jonathan Gerald ENGLAND
  • Patent number: 7361913
    Abstract: An ion implanter includes a source of a stationary, planar ion beam, a set of beamline components that steer the ion beam along a normal beam path as determined by first operating parameter values, an end station that mechanically scans the wafer across the normal beam path, and control circuitry that responds to a glitch in the ion beam during implantation pass to (1) immediately alter an operating parameter of at least one of the beamline components to a second value to direct the ion beam away from the normal beam path and thereby cease implantation at an implantation transition location on the wafer, (2) subsequently move the wafer to an implantation-resuming position in which the implantation transition location on the wafer lies directly on the normal path of the ion beam, and (3) return the operating parameter to its first value to direct the ion beam along the normal beam path and resume ion implantation at the implantation transition location on the wafer.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: April 22, 2008
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Russell J. Low, Joseph C. Olson, David R. Timberlake, James R. McLane, Mark D. Saunders, James J. Cummings, Thomas B. Callahan, Jonathan England
  • Publication number: 20080073578
    Abstract: An apparatus includes a conductive structure and an insulated conductor disposed proximate an exterior portion of the conductive structure to modify an electric field about the conductive structure. The insulated conductor has an insulator with a dielectric strength greater than 75 kilovolts (kV)/inch disposed about a conductor. An ion implanter is also provided. The ion implanter includes an ion source configured to provide an ion beam, a terminal structure defining a cavity, the ion source at least partially disposed within the cavity, and an insulated conductor. The insulated conductor is disposed proximate an exterior portion of the terminal structure to modify an electric field about the terminal structure. The insulated conductor has an insulator with a dielectric strength greater than 75 kV/inch disposed about a conductor.
    Type: Application
    Filed: September 27, 2006
    Publication date: March 27, 2008
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kasegn D. Tekletsadik, Russell J. Low
  • Patent number: 7102139
    Abstract: An ion implanter has a source arc chamber including a conductive end wall at a repeller end of the arc chamber, the end wall having a central portion surrounding an opening. A ceramic insulator is secured to an outer surface of the end wall, such as by peripheral screw threads engaging mating threads at the periphery of a recessed area of the end wall. A conductive repeller has a narrow shaft secured to the insulator and extending through the end wall opening, and a body disposed within the source arc chamber adjacent to the end wall. The end wall, insulator and repeller are configured to form a continuous vacuum gap between the central portion of the end wall and (i) the repeller body, (ii) the repeller shaft, and (iii) the insulator. The insulator interior surface can have a ridged cross section.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: September 5, 2006
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Russell J. Low, Eric R. Cobb, Joseph C. Olson, Leo V. Klos
  • Patent number: 7005657
    Abstract: An analyzer module of an ion implanter includes beam deflection apparatus adjacent to a resolving opening from which a terminal ion beam portion of an ion beam emanates. In response to a beam deflection voltage of a first value of substantially zero volts in a first operating condition, the beam deflection apparatus directs a source ion beam portion of the ion beam toward the resolving opening to generate the terminal ion beam portion. When the beam deflection voltage has a high second value in a second operating condition, the beam deflection apparatus directs the species of the source ion beam portion away from the resolving opening such that the terminal ion beam portion is substantially extinguished. Beam control circuitry is operative during the second operating condition to transition the ion implanter to the first operating condition by rapidly switching the beam deflection voltage from the second value to the first value.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: February 28, 2006
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Russell J. Low, Gordon C. Angel