Patents by Inventor Russell L. Maharidge

Russell L. Maharidge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10808511
    Abstract: The complexity of a fracture network within a subterranean formation may be enhanced by pumping a high breakdown pressure fluid followed by a low breakdown pressure fluid into the formation. The method increases the Stimulated Reservoir Volume (SRV) of the formation and provides for a network of ancillary fractures within the formation.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: October 20, 2020
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Ahmed M. Gomaa, Qi Qu, Russell L. Maharidge, Scott G. Nelson, Ted B. Reed
  • Patent number: 8841914
    Abstract: In some embodiments, a method of approximating or determining at least one dimension of at least one underground geological feature in a zone of interest proximate to a well bore includes generating an electric field in the zone of interest while the well bore and geological feature at least partially contain conductive fluid. At least two sensing electrodes are provided in the well bore and configured to detect differences therebetween in electric potential caused by at least one target object in the zone of interest and provide data relating thereto to at least one data processing system. The data processing system(s) approximates or determines the dimension(s) of the geological feature(s) based at least partially upon data provided by the sensing electrodes.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: September 23, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Qi Qu, Russell L. Maharidge, Thomas J. Pisklak
  • Publication number: 20140251626
    Abstract: The complexity of a fracture network within a subterranean formation may be enhanced by pumping a high breakdown pressure fluid followed by a low breakdown pressure fluid into the formation. The method increases the Stimulated Reservoir Volume (SRV) of the formation and provides for a network of ancillary fractures within the formation.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Inventors: Ahmed M. Gomaa, Qi Qu, Russell L. Maharidge, Scott G. Nelson, Ted B. Reed
  • Patent number: 8797037
    Abstract: A method of approximating or determining at least one dimension or other characteristic of at least one underground geological feature in a zone of interest proximate to a well bore includes generating an electric field in the zone of interest. At least two sensing electrodes are provided in the well bore and configured to detect differences therebetween in electric potential caused by at least one target object in the zone of interest. Proppant containing signal generating devices (SGD) is delivered into the geological feature(s). The SGD generate a detectable signal in response to at least one downhole condition or property. At least one receiver receives the detectable signals and provides data relating thereto. At least one dimension or other characteristic of the geological feature is approximated or determined based at least partially upon data provided by the sensing electrodes and receiver(s).
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: August 5, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Harold Dean Brannon, Qi Qu, Russell L. Maharidge, Thomas J. Pisklak
  • Publication number: 20130193975
    Abstract: In some embodiments, a method of approximating or determining at least one dimension of at least one underground geological feature in a zone of interest proximate to a well bore includes generating an electric field in the zone of interest while the well bore and geological feature at least partially contain conductive fluid. At least two sensing electrodes are provided in the well bore and configured to detect differences therebetween in electric potential caused by at least one target object in the zone of interest and provide data relating thereto to at least one data processing system. The data processing system(s) approximates or determines the dimension(s) of the geological feature(s) based at least partially upon data provided by the sensing electrodes.
    Type: Application
    Filed: August 1, 2012
    Publication date: August 1, 2013
    Inventors: Qi Qu, Russell L. Maharidge, Thomas J. Pisklak
  • Publication number: 20130043873
    Abstract: A method of approximating or determining at least one dimension or other characteristic of at least one underground geological feature in a zone of interest proximate to a well bore includes generating an electric field in the zone of interest. At least two sensing electrodes are provided in the well bore and configured to detect differences therebetween in electric potential caused by at least one target object in the zone of interest. Proppant containing signal generating devices (SGD) is delivered into the geological feature(s). The SGD generate a detectable signal in response to at least one downhole condition or property. At least one receiver receives the detectable signals and provides data relating thereto. At least one dimension or other characteristic of the geological feature is approximated or determined based at least partially upon data provided by the sensing electrodes and receiver(s).
    Type: Application
    Filed: August 1, 2012
    Publication date: February 21, 2013
    Inventors: Harold Dean Brannon, Qi Qu, Russell L. Maharidge, Thomas J. Pisklak
  • Patent number: 8253417
    Abstract: In some embodiments, apparatus useful for determining at least one dimension of at least one geological feature of an earthen formation from a subterranean well bore includes at least two electric current transmitting electrodes and at least two sensing electrodes disposed in the well bore. The electric current transmitting electrodes are configured to create an electric field and the sensing electrodes are configured to detect perturbations in the electric field created by at least one target object.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: August 28, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Thomas J. Pislak, Qi Qu, Russell L. Maharidge
  • Publication number: 20110000667
    Abstract: A method of fracturing using deformable proppants minimizes proppant pack damage, without compromising the fracturing fluid's proppant transport properties during pumping, by use of deformable proppants. Selection of proppant is dependent upon the mechanical properties of the formation rock. The strength of the deformable proppant is dependent upon the modulus of the formation rock being treated such that the proppant is capable of providing, at the very least, a minimum level of conductivity in in-situ stress environments. The maximum elastic modulus of the deformable proppant is less than the minimum modulus of the formation rock which is being treated. The method is particularly applicable in fracturing operations of subterranean reservoirs such as those comprised primarily of coal, chalk, limestone, dolomite, shale, siltstone, diatomite, etc.
    Type: Application
    Filed: September 3, 2010
    Publication date: January 6, 2011
    Inventors: Harold Dean Brannon, Allan Ray Rickards, Christopher John Stephenson, Russell L. Maharidge
  • Patent number: 7789147
    Abstract: A method of fracturing using deformable proppants minimizes proppant pack damage, without compromising the fracturing fluid's proppant transport properties during pumping, by use of deformable proppants. Selection of proppant is dependent upon the mechanical properties of the formation rock. The strength of the deformable proppant is dependent upon the modulus of the formation rock being treated such that the proppant is capable of providing, at the very least, a minimum level of conductivity in in-situ stress environments. The maximum elastic modulus of the deformable proppant is less than the minimum modulus of the formation rock which is being treated. The method is particularly applicable in fracturing operations of subterranean reservoirs such as those comprised primarily of coal, chalk, limestone, dolomite, shale, siltstone, diatomite, etc.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: September 7, 2010
    Assignee: BJ Services Company LLC
    Inventors: Harold Dean Brannon, Allan Ray Rickards, Christopher John Stephenson, Russell L. Maharidge
  • Patent number: 7322411
    Abstract: A method of fracturing using deformable proppants minimizes proppant pack damage, without compromising the fracturing fluid's proppant transport properties during pumping, by use of deformable proppants. Selection of proppant is dependent upon the mechanical properties of the formation rock. The strength of the deformable proppant is dependent upon the modulus of the formation rock being treated such that the proppant is capable of providing, at the very least, a minimum level of conductivity in in-situ stress environments. The maximum elastic modulus of the deformable proppant is less than the minimum modulus of the formation rock which is being treated. The method is particularly applicable in fracturing operations of subterranean reservoirs such as those comprised primarily of coal, chalk, limestone, dolomite, shale, siltstone, diatomite, etc.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: January 29, 2008
    Assignee: BJ Services Company
    Inventors: Harold Dean Brannon, Allan Ray Rickards, Christopher John Stephenson, Russell L. Maharidge