Patents by Inventor Rutger MEYER TIMMERMAN THIJSSEN

Rutger MEYER TIMMERMAN THIJSSEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210247554
    Abstract: A method is provided. The method includes exposing a first material disposed across a first plane on a first substrate to an ion beam to form a first plurality of structures in the first material, the ion beam directed at the first material at an ion beam angle ? relative to a surface normal of the first substrate. The first substrate is positioned at a first rotation angle ?1 between the ion beam and a first vector of the first plurality of structures, the first material is exposed to the ion beam incrementally along a first direction, and exposure of the first material to the ion beam is varied along the first direction to generate a depth variation between the first plurality of structures in the first direction.
    Type: Application
    Filed: January 12, 2021
    Publication date: August 12, 2021
    Inventors: Rutger MEYER TIMMERMAN THIJSSEN, Morgan EVANS, Maurice Emerson PEPLOSKI, Joseph C. OLSON, Thomas James SOLDI
  • Publication number: 20210208317
    Abstract: A method of forming patterned features on a substrate is provided. The method includes positioning a plurality of masks arranged in a mask layout over a substrate. The substrate is positioned in a first plane and the plurality of masks are positioned in a second plane, the plurality of masks in the mask layout have edges that each extend parallel to the first plane and parallel or perpendicular to an alignment feature on the substrate, the substrate includes a plurality of areas configured to be patterned by energy directed through the masks arranged in the mask layout. The method further includes directing energy towards the plurality of areas through the plurality of masks arranged in the mask layout over the substrate to form a plurality of patterned features in each of the plurality of areas.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 8, 2021
    Inventors: Yongan XU, Rutger MEYER TIMMERMAN THIJSSEN, Jinrui GUO, Ludovic GODET
  • Publication number: 20210210308
    Abstract: A carrier proximity mask and methods of assembling and using the carrier proximity mask may include providing a first carrier body, second carrier body, and set of one or more clamps. The first carrier body may have one or more openings formed as proximity masks to form structures on a first side of a substrate. The first and second carrier bodies may have one or more contact areas to align with one or more contact areas on a first and second sides of the substrate. The set of one or more clamps may clamp the substrate between the first carrier body and the second carrier body at contact areas to suspend work areas of the substrate between the first and second carrier bodies. The openings to define edges to convolve beams to form structures on the substrate.
    Type: Application
    Filed: March 25, 2021
    Publication date: July 8, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Morgan Evans, Charles T. Carlson, Rutger Meyer Timmerman Thijssen, Ross Bandy, Ryan Magee
  • Publication number: 20210208308
    Abstract: Embodiments described herein relate to nanostructured trans-reflective filters having sub-wavelength dimensions. In one embodiment, the trans-reflective filter includes a film stack that transmits a filtered light within a range of wavelengths and reflects light not within the first range of wavelengths. The film stack includes a first metal film disposed on a substrate having a first thickness, a first dielectric film disposed on the first metal film having a second thickness, a second metal film disposed on the first dielectric film having a third thickness, and a second dielectric film disposed on the second metal film having a fourth thickness.
    Type: Application
    Filed: March 25, 2021
    Publication date: July 8, 2021
    Inventors: Tapashree ROY, Rutger Meyer Timmerman Thijssen, Robert Jan Visser
  • Publication number: 20210180183
    Abstract: Embodiments of the present disclosure generally relate to processing an optical workpiece containing grating structures on a substrate by deposition processes, such as atomic layer deposition (ALD). In one or more embodiments, a method for processing an optical workpiece includes positioning a substrate containing a first layer within a processing chamber, where the first layer contains grating structures separated by trenches formed in the first layer, and each of the grating structures has an initial critical dimension, and depositing a second layer on at least the sidewalls of the grating structures by ALD to produce corrected grating structures separated by the trenches, where each of the corrected grating structures has a corrected critical dimension greater than the initial critical dimension.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 17, 2021
    Inventors: Jinrui GUO, Ludovic GODET, Rutger MEYER TIMMERMAN THIJSSEN
  • Patent number: 11029206
    Abstract: Embodiments described herein relate to apparatus for measuring and characterizing performance of augmented and virtual reality waveguide structures utilizing glass substrates. The waveguide performance measuring systems generally include a light source configured to direct light towards an incoupling grating area on waveguide and one or more light detectors configured to collect light from an outcoupling grating area on a second side of the waveguide. The light source and one or more light detectors are disposed on one or more adjustable stages positioned about the waveguide. In certain embodiments, the one or more adjustable stages are configured to move in a linear fashion or revolve and/or rotate around the waveguide in an orbital motion.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: June 8, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Jinxin Fu, Rutger Meyer Timmerman Thijssen, Ludovic Godet
  • Patent number: 11016228
    Abstract: Embodiments herein provide systems and methods for forming an optical component. A method may include providing a plurality of proximity masks between a plasma source and a workpiece, the workpiece including a plurality of substrates secured thereto. Each of the plurality of substrates may include first and second target areas. The method may further include delivering, from the plasma source, an angled ion beam towards the workpiece, wherein the angled ion beam is then received at one of the plurality of masks. A first proximity mask may include a first set of openings permitting the angled ion beam to pass therethrough to just the first target area of each of the plurality of substrates. A second proximity mask may include a second set of openings permitting the angled ion beam to pass therethrough just to the second target area of each of the plurality of substrates.
    Type: Grant
    Filed: February 9, 2020
    Date of Patent: May 25, 2021
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen, Joseph Olson, Peter Kurunczi, Robert Masci
  • Publication number: 20210141131
    Abstract: Methods of producing gratings with trenches having variable height are provided. In one example, a method of forming a diffracted optical element may include providing an optical grating layer over a substrate, patterning a hardmask over the optical grating layer, and forming a sacrificial layer over the hardmask, the sacrificial layer having a non-uniform height measured from a top surface of the optical grating layer. The method may further include etching a plurality of angled trenches into the optical grating layer to form an optical grating, wherein a first depth of a first trench of the plurality of trenches is different than a second depth of a second trench of the plurality of trenches.
    Type: Application
    Filed: October 16, 2020
    Publication date: May 13, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen, Joseph C. Olson
  • Patent number: 11001535
    Abstract: Embodiments of the present disclosure generally relate to methods of forming optical devices comprising nanostructures disposed on transparent substrates. A substrate, such as a silicon wafer, is provided as a base for forming an optical device. A transparent layer is disposed on a first surface of the substrate, and a structure layer is disposed on the transparent surface. An etch mask layer is disposed on a second surface of the substrate opposite the first surface, and a window or opening is formed in the etch mask layer to expose a portion of the second surface of the substrate. A plurality of nanostructures is then formed in the structure layer, and a portion of the substrate extending from the window to the transparent layer is removed. A portion of the transparent layer having nanostructures disposed thereon is then detached from the substrate to form an optical device.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: May 11, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tapashree Roy, Rutger Meyer Timmerman Thijssen
  • Patent number: 11004648
    Abstract: Embodiments herein provide systems and methods for multi-area selecting etching. In some embodiments, a system may include a plasma source delivering a plurality of angled ion beams to a substrate, the substrate including a plurality of devices. Each of the plurality of devices may include a first angled grating and a second angled grating. The system may further include a plurality of blocking masks positionable between the plasma source and the substrate. A first blocking mask of the plurality of blocking masks may include a first set of openings permitting the angled ion beams to pass therethrough to form the first angled gratings of each of the plurality of devices. A second blocking mask of the plurality of blocking masks may include a second set of openings permitting the angled ion beams to pass therethrough to form the second angled gratings of each of the plurality of devices.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: May 11, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen
  • Patent number: 10991547
    Abstract: A carrier proximity mask and methods of assembling and using the carrier proximity mask may include providing a first carrier body, second carrier body, and set of one or more clamps. The first carrier body may have one or more openings formed as proximity masks to form structures on a first side of a substrate. The first and second carrier bodies may have one or more contact areas to align with one or more contact areas on a first and second sides of the substrate. The set of one or more clamps may clamp the substrate between the first carrier body and the second carrier body at contact areas to suspend work areas of the substrate between the first and second carrier bodies. The openings to define edges to convolve beams to form structures on the substrate.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: April 27, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Morgan Evans, Charles T. Carlson, Rutger Meyer Timmerman Thijssen, Ross Bandy, Ryan Magee
  • Patent number: 10989840
    Abstract: Embodiments described herein relate to nanostructured trans-reflective filters having sub-wavelength dimensions. In one embodiment, the trans-reflective filter includes a film stack that transmits a filtered light within a range of wavelengths and reflects light not within the first range of wavelengths. The film stack includes a first metal film disposed on a substrate having a first thickness, a first dielectric film disposed on the first metal film having a second thickness, a second metal film disposed on the first dielectric film having a third thickness, and a second dielectric film disposed on the second metal film having a fourth thickness.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: April 27, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tapashree Roy, Rutger Meyer Timmerman Thijssen, Robert Jan Visser
  • Publication number: 20210090843
    Abstract: A carrier proximity mask and methods of assembling and using the carrier proximity mask may include providing a first carrier body, second carrier body, and set of one or more clamps. The first carrier body may have one or more openings formed as proximity masks to form structures on a first side of a substrate. The first and second carrier bodies may have one or more contact areas to align with one or more contact areas on a first and second sides of the substrate. The set of one or more clamps may clamp the substrate between the first carrier body and the second carrier body at contact areas to suspend work areas of the substrate between the first and second carrier bodies. The openings to define edges to convolve beams to form structures on the substrate.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 25, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Morgan Evans, Charles T. Carlson, Rutger Meyer Timmerman Thijssen, Ross Bandy
  • Publication number: 20210090858
    Abstract: A carrier proximity mask and methods of assembling and using the carrier proximity mask may include providing a first carrier body, second carrier body, and set of one or more clamps. The first carrier body may have one or more openings formed as proximity masks to form structures on a first side of a substrate. The first and second carrier bodies may have one or more contact areas to align with one or more contact areas on a first and second sides of the substrate. The set of one or more clamps may clamp the substrate between the first carrier body and the second carrier body at contact areas to suspend work areas of the substrate between the first and second carrier bodies. The openings to define edges to convolve beams to form structures on the substrate.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 25, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Morgan Evans, Charles T. Carlson, Rutger Meyer Timmerman Thijssen, Ross Bandy, Ryan Magee
  • Patent number: 10957512
    Abstract: A carrier proximity mask and methods of assembling and using the carrier proximity mask may include providing a first carrier body, second carrier body, and set of one or more clamps. The first carrier body may have one or more openings formed as proximity masks to form structures on a first side of a substrate. The first and second carrier bodies may have one or more contact areas to align with one or more contact areas on a first and second sides of the substrate. The set of one or more clamps may clamp the substrate between the first carrier body and the second carrier body at contact areas to suspend work areas of the substrate between the first and second carrier bodies. The openings to define edges to convolve beams to form structures on the substrate.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: March 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Morgan Evans, Charles T. Carlson, Rutger Meyer Timmerman Thijssen, Ross Bandy
  • Publication number: 20210066036
    Abstract: Aspects of the disclosure relate to apparatus for the fabrication of waveguides. In one example, an angled ion source is utilized to project ions toward a substrate to form a waveguide which includes angled gratings. In another example, an angled electron beam source is utilized to project electrons toward a substrate to form a waveguide which includes angled gratings. Further aspects of the disclosure provide for methods of forming angled gratings on waveguides utilizing an angled ion beam source and an angled electron beam source.
    Type: Application
    Filed: October 26, 2020
    Publication date: March 4, 2021
    Inventors: Ludovic GODET, Rutger MEYER TIMMERMAN THIJSSEN, Kartik RAMASWAMY, Yang YANG, Manivannan THOTHADRI, Chien-An CHEN
  • Patent number: 10935799
    Abstract: A method of forming an optical grating component. The method may include providing a substrate, the substrate comprising an underlayer and a hard mask layer, disposed on the underlayer. The method may include patterning the hard mask layer to define a grating field and etching the underlayer within the grating field to define a variable height of the underlayer along a first direction, the first direction being parallel to a plane of the substrate. The method may include forming an optical grating within the grating field using an angled ion etch, the optical grating comprising a plurality of angled structures, disposed at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate, wherein the plurality of angled structures define a variable depth along the first direction, based upon the variable height of the underlayer.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: March 2, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Rutger Meyer Timmerman Thijssen, Ludovic Godet, Morgan Evans, Joseph C. Olson
  • Publication number: 20210027985
    Abstract: Embodiments described herein relate to methods and apparatus for forming gratings having a plurality of fins with different slant angles on a substrate and forming fins with different slant angles on successive substrates using angled etch systems and/or an optical device. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 28, 2021
    Inventors: Joseph C. OLSON, Morgan EVANS, Rutger MEYER TIMMERMAN THIJSSEN
  • Publication number: 20210005461
    Abstract: An optical grating component may include a substrate, and an optical grating, the optical grating being disposed on the substrate. The optical grating may include a plurality of angled structures, disposed at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate, wherein the plurality of angled structures are arranged to define a variable depth along a first direction, the first direction being parallel to the plane of the substrate.
    Type: Application
    Filed: September 22, 2020
    Publication date: January 7, 2021
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John Hautala, Morgan Evans, Rutger Meyer Timmerman Thijssen, Joseph C. Olson
  • Publication number: 20200386926
    Abstract: Embodiments of the present disclosure relate to methods for fabricating optical devices. One embodiment of the method includes disposing a structure material layer on a surface of a substrate and disposing a patterned photoresist over the structure material layer. The patterned photoresist has at least one device portion and at least one auxiliary portion. Each device portion and each auxiliary portion exposes unmasked portions of the structure material layer. The unmasked portions of structure material layer corresponding to each device portion and each auxiliary portion are etched. The etching the unmasked portions forms at least one optical device having device structures corresponding to the unmasked portions of at least one device portion and at least one auxiliary region having auxiliary structures corresponding to the unmasked portions of at least one auxiliary portion.
    Type: Application
    Filed: May 21, 2020
    Publication date: December 10, 2020
    Inventors: Sage Toko Garrett DOSHAY, Rutger MEYER TIMMERMAN THIJSSEN, Ludovic GODET, Chien-An CHEN, Pinkesh Rohit SHAH