Patents by Inventor Ryoji Nishio

Ryoji Nishio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040173314
    Abstract: A plasma processing apparatus ands a plasma processing method of excellent mass production stability by controlling deposition films deposited on the wall of a vacuum vessel are provided. This apparatus comprises a gas ring forming a portion of a vacuum processing chamber and having a blowing port for a processing gas, a bell jar covering a portion above the gas ring to define a vacuum processing chamber, an antenna, disposed above the bell jar, for supplying RF electric fields into the vacuum processing chamber to form plasmas, a sample table for placing a sample in the vacuum processing chamber, a Faraday shield disposed between the antenna and the bell jar and applied with an RF bias voltage, and a deposition preventive plate attached detachably to the inner surface of the gas ring excluding the blowing port for the processing gas.
    Type: Application
    Filed: March 5, 2003
    Publication date: September 9, 2004
    Inventors: Ryoji Nishio, Ken Yoshioka, Saburou Kanai, Tadamitsu Kanekiyo, Hideki Kihara, Koji Okuda
  • Publication number: 20040168767
    Abstract: A semiconductor processing apparatus that processes a semiconductor wafer disposed in a process chamber of a processing apparatus main unit 38 comprises: a setting unit 33 for enabling a user to set a temperature of the semiconductor wafer; and a control unit 26 for controlling a processing of the semiconductor wafer based on the temperature of the semiconductor wafer set by the setting unit.
    Type: Application
    Filed: February 27, 2003
    Publication date: September 2, 2004
    Inventors: Seiichiro Kanno, Ryoji Nishio, Ken Yoshioka, Saburou Kanai, Hideki Kihara, Hideyuki Yamamoto
  • Publication number: 20040149384
    Abstract: A semiconductor manufacturing apparatus includes a unit for generating a plasma in a vacuum chamber, a wafer stage for holding a semiconductor wafer introduced into the vacuum chamber, a high frequency power supply for applying a high frequency voltage to the wafer stage, a wafer voltage probe for measuring a voltage of the semiconductor wafer at a rear surface of the semiconductor wafer, a current and voltage probe for measuring at least one of a voltage and a current applied to the wafer stage from the high frequency power supply, and a control portion. The control portion obtains an impedance from the semiconductor wafer to earth through the plasma on the basis of a voltage value of the semiconductor wafer measured by the wafer voltage probe, and a voltage value or a current value measured by the current and voltage probe, and performs a processing based on the obtained impedance.
    Type: Application
    Filed: October 7, 2003
    Publication date: August 5, 2004
    Inventors: Seiichiro Kanno, Ryoji Nishio, Tsutomu Tetsuka, Junichi Tanaka, Hideyuki Yamamoto, Kazuyuki Ikenaga, Saburou Kanai
  • Patent number: 6771481
    Abstract: A plasma processing apparatus comprises: a body that comprises a vacuum processing chamber with a wafer stage on which a semiconductor wafer is held, a plasma producing unit for producing plasma within the vacuum chamber, and a high frequency source for applying a high frequency bias voltage to the wafer stage. A control unit controls various parameters of the body of the plasma processing apparatus. The control unit comprises a detecting unit for detecting the high frequency voltage or high frequency current applied to the wafer stage and for calculating a difference in phase between the high frequency voltage and the high frequency current, and a unit for obtaining a characteristic of the plasma or an electric characteristic of the plasma processing apparatus based on the detected high frequency voltage, the detected high frequency current, and the obtained difference in phase.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: August 3, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Ryoji Nishio, Seiichiro Kanno, Hideyuki Yamamoto, Akira Kagoshima
  • Patent number: 6759253
    Abstract: The intensity of the light emitted from the light-emitting diode on wafer is measured and then the potential difference between the terminals of the light-emitting element, and the plasma current flowing thereinto are derived from measured light intensity. Since the use of a camera enables non-contact measurement of emitted light intensity, the lead-in terminals for lead wires that are always required in conventional probing methods become unnecessary. In addition, since the target wafer does not require lead wire connection, wafers can be changed in the same way as performed for etching.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: July 6, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Tatehito Usui, Tetsuo Ono, Ryoji Nishio, Kazue Takahashi, Nobuyuki Mise
  • Patent number: 6747239
    Abstract: A plasma processing apparatus having a process chamber to process specimens; a status detecting unit for detecting the internal processing status of the process chamber and outputting a plurality of signals; and a signal converting unit for extracting an arbitrary number of signal processing filters from a signal filter database using a signal filter selector and creating an arbitrary number of device status signals. The signal converting unit creates fewer effective device status signals of a time series from the output signals.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: June 8, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Junichi Tanaka, Hiroyuki Kitsunai, Ryoji Nishio, Seiichiro Kanno, Hideyuki Yamamoto
  • Publication number: 20040076411
    Abstract: A wafer processing method for use with a wafer processing apparatus having a liquid cooling jacket with a built-in coolant liquid circulation path and a ceramic plate as attached onto the liquid cooling jacket and having therein a heater and an electrode for an electrostatic chuck. The method enables performance of wafer processing while letting a wafer be mounted on the ceramic plate by a wafer transport. The method includes causing the wafer transport to transport the wafer onto the ceramic plate, pre-heating the wafer while the wafer is held on the ceramic plate for a predetermined length of time, and mounting the preheated wafer on the ceramic plate.
    Type: Application
    Filed: September 10, 2003
    Publication date: April 22, 2004
    Inventors: Seiichiro Kanno, Ken Yoshioka, Ryoji Nishio, Saburou Kanai, Hideki Kihara, Koji Okuda
  • Patent number: 6716301
    Abstract: A semiconductor manufacturing apparatus includes a unit for generating a plasma in a vacuum chamber, a wafer stage for holding a semiconductor wafer introduced into the vacuum chamber, a high frequency power supply for applying a high frequency voltage to the wafer stage, a wafer voltage probe for measuring a voltage of the semiconductor wafer at a rear surface of the semiconductor wafer, a current and voltage probe for measuring at least one of a voltage and a current applied to the wafer stage from the high frequency power supply, and a control portion. The control portion obtains an impedance from the semiconductor wafer to earth through the plasma on the basis of a voltage value of the semiconductor wafer measured by the wafer voltage probe, and a voltage value or a current value measured by the current and voltage probe, and performs a processing based on the obtained impedance.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: April 6, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Seiichiro Kanno, Ryoji Nishio, Tsutomu Tetsuka, Junichi Tanaka, Hideyuki Yamamoto, Kazuyuki Ikenaga, Saburou Kanai
  • Publication number: 20040055540
    Abstract: A wafer stage for use in a wafer processing apparatus having a liquid cooling jacket with a built-in coolant liquid circulation path and a ceramic plate as attached onto the liquid cooling jacket and having therein a heater and an electrode for an electrostatic chuck. The wafer stage enables performance of wafer processing while letting a wafer be mounted on the ceramic plate. The liquid cooling jacket enables attachment of the ceramic plate through a gap for circulation of a coolant gas as formed over the liquid cooling jacket, and a heat resistant seal material containing therein an elastic body for sealing the coolant gas between the liquid cooling jacket and the ceramic plate.
    Type: Application
    Filed: September 10, 2003
    Publication date: March 25, 2004
    Inventors: Seiichiro Kanno, Ken Yoshioka, Ryoji Nishio, Saburou Kanai, Hideki Kihara, Koji Okuda
  • Publication number: 20040045813
    Abstract: A heater function and an electrostatic chuck function are incorporated in a ceramic plate for placing a wafer, and the ceramic plate is fixed to a cooling jacket with ceramic bolts having a low coefficient of thermal conductivity with an intervening heat insulating member. In order to transmit heat input in the wafer to the water-cooling jacket with high repeatability, a heat-conducting member having elasticity in the vertical direction is sandwiched between the ceramic plate and the cooling jacket. The degradation of temperature distribution of wafers due to the radiant heat radiation from the sidewall of the ceramic plate to the chamber can be minimized by covering the circumference of the ceramic plate with a radiation insulator.
    Type: Application
    Filed: September 3, 2002
    Publication date: March 11, 2004
    Inventors: Seiichiro Kanno, Ken Yoshioka, Ryoji Nishio, Saburou Kanai, Hideki Kihara, Koji Okuda, Manabu Edamura
  • Publication number: 20040040662
    Abstract: A plasma processing apparatus having a process chamber, a process gas feeding pipe for introducing a process gas into the process chamber, a holding electrode for receiving and holding a sample placed in the process chamber, a bias-potential-generating radio-frequency power source for supplying a bias potential to the sample, and an induction coil to produce a plasma, wherein the process chamber comprises a conductor member, disposed to face a portion of an internal surface of the process chamber, for supplying a bias potential to the portion, and a detachable trap member having a surface for deposition of reaction products formed at another portion of the internal surface of the process chamber.
    Type: Application
    Filed: August 28, 2002
    Publication date: March 4, 2004
    Inventors: Manabu Edamura, Seiichiro Kanno, Ryoji Nishio, Ken Yoshioka, Saburou Kanai, Tadamitsu Kanekiyo
  • Patent number: 6646233
    Abstract: A wafer stage for use in wafer processing apparatus which comprises a liquid cooling jacket with a built-in coolant liquid circulation path and a ceramic plate that is attached onto the liquid cooling jacket and has therein a heater and an electrode for electrostatic chuck use, the wafer stage performing wafer processing while letting a wafer be mounted on the ceramic plate, wherein the liquid cooling jacket permits attachment of the ceramic plate through a coolant gas circulating gap as formed over the liquid cooling jacket while disposing between the liquid cooling jacket and the ceramic plate more than one heat resistant seal material containing therein an elastic body for sealing the coolant gas.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: November 11, 2003
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Seiichiro Kanno, Ken Yoshioka, Ryoji Nishio, Saburou Kanai, Hideki Kihara, Koji Okuda
  • Publication number: 20030192864
    Abstract: ABSTRACT A plasma processing apparatus having a process chamber to process specimens; a status detecting unit for detecting the internal processing status of the process chamber and outputting a plurality of signals; and a signal converting unit for extracting an arbitrary number of signal processing filters from a signal filter database using a signal filter selector and creating an arbitrary number of device status signals. The signal converting unit creates fewer effective device status signals of a time series from the output signals.
    Type: Application
    Filed: May 14, 2003
    Publication date: October 16, 2003
    Inventors: Junichi Tanaka, Hiroyuki Kitsunai, Ryoji Nishio, Seiichiro Kanno, Hideyuki Yamamoto
  • Publication number: 20030170998
    Abstract: A film of hardly-etched material formed on a substrate is etched using a mask formed on the film of hardly-etched material and a plasma, wherein the film of hardly-etched material is etched using the mask formed with a side wall angled at 90 degrees or less with respect to the surface of the substrate, thereby forming the etched film with a taper angle to the surface of the substrate equal to or larger than the taper angle of the mask.
    Type: Application
    Filed: March 6, 2002
    Publication date: September 11, 2003
    Inventors: Nobuyuki Mise, Ken Yoshioka, Ryoji Nishio, Tatehito Usui
  • Publication number: 20030168439
    Abstract: A wafer stage for use in wafer processing apparatus which comprises a liquid cooling jacket with a built-in coolant liquid circulation path and a ceramic plate that is attached onto the liquid cooling jacket and has therein a heater and an electrode for electrostatic chuck use, the wafer stage performing wafer processing while letting a wafer be mounted on the ceramic plate, wherein the liquid cooling jacket permits attachment of the ceramic plate through a coolant gas circulating gap as formed over the liquid cooling jacket while disposing between the liquid cooling jacket and the ceramic plate more than one heat resistant seal material containing therein an elastic body for sealing the coolant gas.
    Type: Application
    Filed: March 5, 2002
    Publication date: September 11, 2003
    Inventors: Seiichiro Kanno, Ken Yoshioka, Ryoji Nishio, Saburou Kanai, Hideki Kihara, Koji Okuda
  • Patent number: 6590179
    Abstract: A plasma processing apparatus having a process chamber to process specimens, a status detecting means for detecting the internal processing status of said process chamber and outputting a plurality of signals, and signal converting means for extracting an arbitrary number of signal processing filters from a signal filter database using a signal filter selecting means and creating an arbitrary number of device status signals. The signal converting means creates fewer effective device status signals of a time series from said output signals.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: July 8, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Junichi Tanaka, Hiroyuki Kitsunai, Ryoji Nishio, Seiichiro Kanno, Hideyuki Yamamoto
  • Patent number: 6499424
    Abstract: A plasma is generated by feeding an antenna with radio-frequency electric power generated by a radio-frequency power source, and one end of the antenna is grounded to the earth through a capacitor of variable capacitance. A Faraday shield is electrically isolated from the earth, and the capacitance of the variable capacitor is determined to be such a value that the voltage at the two ends of the antenna may be equal in absolute values and inverted to reduce the partial removal of the wall after the plasma ignition. At the time of igniting the plasma, the capacitance of the capacitor is adjusted to a larger or smaller value than that minimizing the damage of the wall.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: December 31, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Kazumi, Tsutomu Tetsuka, Ryoji Nishio, Masatsugu Arai, Ken Yoshioka, Tsunehiko Tsubone, Akira Doi, Manabu Edamura, Kenji Maeda, Saburo Kanai
  • Patent number: 6481370
    Abstract: A plasma is generated by feeding an antenna with radio-frequency electric power generated by a radio-frequency power source, and one end of the antenna is grounded to the earth through a capacitor of variable capacitance. A Faraday shield is electrically isolated from the earth, and the capacitance of the variable capacitor is determined to be such a value that the voltage at the two ends of the antenna may be equal in absolute values and inverted to reduce the partial removal of the wall after the plasma ignition. At the time of igniting the plasma, the capacitance of the capacitor is adjusted to a larger or smaller value than that minimizing the damage of the wall.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: November 19, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Kazumi, Tsutomu Tetsuka, Ryoji Nishio, Masatsugu Arai, Ken Yoshioka, Tsunehiko Tsubone, Akira Doi, Manabu Edamura, Kenji Maeda, Saburo Kanai
  • Publication number: 20020134510
    Abstract: A plasma is generated by feeding an antenna with radio-frequency electric power generated by a radio-frequency power source, and one end of the antenna is grounded to the earth through a capacitor of variable capacitance. A Faraday shield is electrically isolated from the earth, and the capacitance of the variable capacitor is determined to be such a value that the voltage at the two ends of the antenna may be equal in absolute values and inverted to reduce the partial removal of the wall after the plasma ignition. At the time of igniting the plasma, the capacitance of the capacitor is adjusted to a larger or smaller value than that minimizing the damage of the wall.
    Type: Application
    Filed: May 7, 2002
    Publication date: September 26, 2002
    Inventors: Hideyuki Kazumi, Tsutomu Tetsuka, Ryoji Nishio, Masatsugu Arai, Ken Yoshioka, Tsunehiko Tsubone, Akira Doi, Manabu Edamura, Kenji Maeda, Saburo Kanai
  • Publication number: 20020124963
    Abstract: A plasma is generated by feeding an antenna with radio-frequency electric power generated by a radio-frequency power source, and one end of the antenna is grounded to the earth through a capacitor of variable capacitance. A Faraday shield is electrically isolated from the earth, and the capacitance of the variable capacitor is determined to be such a value that the voltage at the two ends of the antenna may be equal in absolute values and inverted to reduce the partial removal of the wall after the plasma ignition. At the time of igniting the plasma, the capacitance of the capacitor is adjusted to a larger or smaller value than that minimizing the damage of the wall.
    Type: Application
    Filed: May 7, 2002
    Publication date: September 12, 2002
    Inventors: Hideyuki Kazumi, Tsutomu Tetsuka, Ryoji Nishio, Masatsugu Arai, Ken Yoshioka, Tsunehiko Tsubone, Akira Doi, Manabu Edamura, Kenji Maeda, Saburo Kanai