Patents by Inventor Ryoji Yanagi

Ryoji Yanagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7921637
    Abstract: To provide a turbofan jet engine which is capable of increasing the bypass ratio without increasing the fan diameter, and of reducing air resistance acting on the engine, a front fan duct that discharges air compressed by a front fan to the atmosphere and an aft fan duct that introduces air into an aft fan are disposed such as to change cross-sectional shapes thereof by rotating around a core engine in a counterclockwise direction, so that the cross-sectional geometric relationship between the front fan duct and the aft fan duct at a position immediately posterior to the front fan and a cross-sectional geometric relationship between the front fan duct and the aft fan duct at a position immediately anterior to the aft fan are inverted.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: April 12, 2011
    Assignee: Japan Aerospace Exploration Agency
    Inventors: Ryoji Yanagi, Hitoshi Fujiwara
  • Patent number: 7887287
    Abstract: To provide a turbofan jet engine for a supersonic aircraft, which enables a supersonic cruise with small additional drag due to engine installation while minimizing the jet noise at takeoff. In the turbofan jet engine, two fans, i.e., a front fan and an aft fan, are disposed, and an air inlet and an air outlet are provided on each of the front and aft fans, whereby at takeoff, air is introduced to each of the air inlets of the front and aft fans to drive the front and aft fans in parallel, and the air is then ejected from each of the outlets. On the other hand, during a supersonic cruise, an inlet of an aft fan duct is coupled to an outlet of a front fan duct, where external air is introduced only to an air inlet of the front fan duct and the air compressed through the front fan is fed to the aft fan duct and further compressed through the aft fan, and ejected from a nozzle, so that the front and aft fans are driven in series.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: February 15, 2011
    Assignee: Japan Aerospace Exploration Agency
    Inventors: Ryoji Yanagi, Hisao Futamura, Hitoshi Fujiwara
  • Publication number: 20090226297
    Abstract: To provide a turbofan jet engine which is capable of increasing the bypass ratio without increasing the fan diameter, and of reducing air resistance acting on the engine, a front fan duct that discharges air compressed by a front fan to the atmosphere and an aft fan duct that introduces air into an aft fan are disposed such as to change cross-sectional shapes thereof by rotating around a core engine in a counterclockwise direction, so that the cross-sectional geometric relationship between the front fan duct and the aft fan duct at a position immediately posterior to the front fan and a cross-sectional geometric relationship between the front fan duct and the aft fan duct at a position immediately anterior to the aft fan are inverted.
    Type: Application
    Filed: February 25, 2009
    Publication date: September 10, 2009
    Applicant: JAPAN AEROSPACE EXPLORATION AGENCY
    Inventors: Ryoji Yanagi, Hitoshi Fujiwara
  • Patent number: 7555893
    Abstract: To provide an aircraft propulsion system which can secure the optimum thrust and thrust vector for flight conditions, as well as the optimum sectional area for the engine, and which is highly compatible with the environment. An electrical generator is coupled to a turbofan engine, the electrical generator is driven by output power of the turbofan engine to output electric power, and an electromagnetic driving fan is driven by the electric power. On the other hand, after bringing each of coils in the electromagnetic driving fan to a superconductive state, liquid hydrogen is introduced to a heat exchanger, collects the energy of exhaust as heat, is then vaporized, and thereafter supplied to a combustor and to a fuel cell. Further, the electromagnetic driving fan is changed in its rotational phase by a rotating mechanism portion, is made movable in a width direction of a wing and a wing chord direction by a slide mechanism portion, and can be stored inside or outside the wing by a storage mechanism portion.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: July 7, 2009
    Assignees: Japan Aerospace Exploration Agency, Nihon University
    Inventors: Keiichi Okai, Takeshi Tagashira, Ryoji Yanagi, Hiroshi Nomura
  • Patent number: 7423405
    Abstract: In order to obtain an electromagnetic rotating machine of lightweight and high energy efficiency, which produces big torque for rotating a large-diameter fan, a coil A and coil B as excitation coils are disposed on an inner peripheral surface of a fan casing so as to face an outer circumference of the fan, and a coil M as an armature coil crosses at a central portion and is disposed on the outer circumference of the fan. The relationships |Iai|=|Iai+1| and Iai=?Iai+1, or |Ibi|=|Ibi+1| and Ibi=?Ibi+1 are obtained respectively for the coil A or coil B by a current control device (not shown). Moreover, the coil A and coil B are subjected to excitation control such that the direction of effective electromagnetic force, which is generated by an interaction between an effective magnetic field formed by the coil A and effective induced current applied to the coil M by the coil B, corresponds to the direction of rotation of the fan.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: September 9, 2008
    Assignees: Japan Aerospace Exploration Agency, Nihon University
    Inventors: Keiichi Okai, Takeshi Tagashira, Ryoji Yanagi, Hiroshi Nomura
  • Publication number: 20080075580
    Abstract: To provide a turbofan jet engine for a supersonic aircraft, which enables a supersonic cruise with small additional drag due to engine installation while minimizing the jet noise at takeoff. In the turbofan jet engine, two fans, i.e., a front fan and an aft fan, are disposed, and an air inlet and an air outlet are provided on each of the front and aft fans, whereby at takeoff, air is introduced to each of the air inlets of the front and aft fans to drive the front and aft fans in parallel, and the air is then ejected from each of the outlets. On the other hand, during a supersonic cruise, an inlet of an aft fan duct is coupled to an outlet of a front fan duct, where external air is introduced only to an air inlet of the front fan duct and the air compressed through the front fan is fed to the aft fan duct and further compressed through the aft fan, and ejected from a nozzle, so that the front and aft fans are driven in series.
    Type: Application
    Filed: September 24, 2007
    Publication date: March 27, 2008
    Applicant: JAPAN AEROSPACE EXPLORATION AGENCY
    Inventors: Ryoji Yanagi, Hisao Futamura, Hitoshi Fujiwara
  • Publication number: 20060254255
    Abstract: To provide an aircraft propulsion system which can secure the optimum thrust and thrust vector for flight conditions, as well as the optimum sectional area for the engine, and which is highly compatible with the environment. An electrical generator is coupled to a turbofan engine, the electrical generator is driven by output power of the turbofan engine to output electric power, and an electromagnetic driving fan is driven by the electric power. On the other hand, after bringing each of coils in the electromagnetic driving fan to a superconductive state, liquid hydrogen is introduced to a heat exchanger, collects the energy of exhaust as heat, is then vaporized, and thereafter supplied to a combustor and to a fuel cell. Further, the electromagnetic driving fan is changed in its rotational phase by a rotating mechanism portion, is made movable in a width direction of a wing and a wing chord direction by a slide mechanism portion, and can be stored inside or outside the wing by a storage mechanism portion.
    Type: Application
    Filed: January 23, 2006
    Publication date: November 16, 2006
    Applicants: JAPAN AEROSPACE EXPLORATION AGENCY, NIHON UNIVERSITY
    Inventors: Keiichi Okai, Takeshi Tagashira, Ryoji Yanagi, Hiroshi Nomura
  • Publication number: 20060176009
    Abstract: In order to obtain an electromagnetic rotating machine of lightweight and high energy efficiency, which produces big torque for rotating a large-diameter fan, a coil A and coil B as excitation coils are disposed on an inner peripheral surface of a fan casing so as to face an outer circumference of the fan, and a coil M as an armature coil crosses at a central portion and is disposed on the outer circumference of the fan. The relationships |Iai|=|Iai+1| and Iai=?Iai+1, or |Ibi|=|Ibi+1| and Ibi=?Ibi+1 are obtained respectively for the coil A or coil B by a current control device (not shown). Moreover, the coil A and coil B are subjected to excitation control such that the direction of effective electromagnetic force, which is generated by an interaction between an effective magnetic field formed by the coil A and effective induced current applied to the coil M by the coil B, corresponds to the direction of rotation of the fan.
    Type: Application
    Filed: January 23, 2006
    Publication date: August 10, 2006
    Applicants: JAPAN AEROSPACE EXPLORATION AGENCY, NIHON UNIVERSITY
    Inventors: Keiichi Okai, Takeshi Tagashira, Ryoji Yanagi, Hiroshi Nomura