Patents by Inventor Ryosuke Sakashita

Ryosuke Sakashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961229
    Abstract: In this invention, a control unit in an ophthalmic image processing device acquires an ophthalmic image captured by an ophthalmic image capture device (S11). The control unit, by inputting the ophthalmic image into a mathematical model that has been trained by a machine-learning algorithm, acquires a probability distribution in which the random variables are the coordinates at which a specific site and/or a specific boundary of a tissue is present within a region of the ophthalmic image (S14). On the basis of the acquired probability distribution, the control unit detects the specific boundary and/or the specific site (S16, S24).
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: April 16, 2024
    Assignee: NIDEK CO., LTD.
    Inventors: Ryosuke Shiba, Sohei Miyazaki, Yusuke Sakashita, Yoshiki Kumagai, Naoki Takeno
  • Publication number: 20240052478
    Abstract: A potassium sodium niobate sputtering target having a relative density of 95% or higher. A method of producing a potassium sodium niobate sputtering target, including the steps of mixing a Nb2O5 powder, a K2CO3 powder, and a Na2Co3 powder, pulverizing the mixed powder to achieve a grain size d50 of 100 ?m or less, and performing hot press sintering to the obtained pulverized powder in an inert gas or vacuum atmosphere under conditions of a temperature of 900° C. or higher and less than 1150° C., and a load of 150 to 400 kgf/cm2. A high density potassium sodium niobate sputtering target capable of industrially depositing potassium sodium niobate films via the sputtering method is provided.
    Type: Application
    Filed: October 27, 2023
    Publication date: February 15, 2024
    Inventors: Ryosuke Sakashita, Hiroshi Takamura, Atsushi Nara, Ryo Suzuki
  • Patent number: 11851747
    Abstract: A potassium sodium niobate sputtering target having a relative density of 95% or higher. A method of producing a potassium sodium niobate sputtering target, including the steps of mixing a Nb2O5 powder, a K2Co3 powder, and a Na2Co3 powder, pulverizing the mixed powder to achieve a grain size d50 of 100 ?m or less, and performing hot press sintering to the obtained pulverized powder in an inert gas or vacuum atmosphere under conditions of a temperature of 900° C. or higher and less than 1150° C., and a load of 150 to 400 kgf/cm2. The present invention aims to provide a high density potassium sodium niobate sputtering target capable of industrially depositing potassium sodium niobate films via the sputtering method.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: December 26, 2023
    Assignee: JX METALS CORPORATION
    Inventors: Ryosuke Sakashita, Hiroshi Takamura, Atsushi Nara, Ryo Suzuki
  • Patent number: 11538673
    Abstract: A sputtering target-backing plate assembly obtained by bonding a sputtering target and a backing plate using a brazing material, wherein a braze bonding layer which bonds the sputtering target and the backing plate contains a material having thermal conductivity that is higher than that of the brazing material in an amount of 5 vol % or more and 50 vol % or less, and a thickness of the braze bonding layer is 100 ?m or more and 700 ?m or less. An object is to prevent the seepage of the brazing material while maintaining the thickness of the braze bonding layer.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: December 27, 2022
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventors: Ryosuke Sakashita, Yosuke Endo, Naoki Ise, Hiroshi Takamura
  • Patent number: 11414745
    Abstract: A sputtering target-backing plate assembly in which a Si sputtering target is bonded to a backing plate by way of a brazing material, wherein the brazing material has a melting point of 200° C. or higher and a bonding strength of 0.16 kgf/cm2 or higher. An object is to provide a sputtering target-backing plate assembly in which a Si sputtering target is bonded to a backing plate by way of a brazing material, wherein the sputtering target-backing plate assembly has a high bonding strength and is free from separation even under high temperature sputtering conditions such as during high power sputtering.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: August 16, 2022
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Hiroshi Takamura, Ryosuke Sakashita
  • Patent number: 11313029
    Abstract: A sputtering target formed from a potassium sodium niobate sintered body to which a dopant has been added; as a dopant, the sputtering target includes one or more types among Li, Mg, Ca, Sr, Ba, Bi, Sb, V, In, Ta, Mo, W, Cr, Ti, Zr, Hf, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Cu, Zn, Ag, Mn, Fe, Co, Ni, Al, Si, Ge, Sn, and Ga; and a variation coefficient of a dopant concentration in a plane of the sputtering target is 0.12 or less. In terms of suppressing the generation of particles, provided is a sputtering target which is formed from a sintered body that includes potassium sodium niobate and to which a dopant has been added.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: April 26, 2022
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventors: Ryosuke Sakashita, Yoshitaka Shibuya
  • Publication number: 20200370168
    Abstract: A potassium sodium niobate sputtering target having a relative density of 95% or higher. A method of producing a potassium sodium niobate sputtering target, including the steps of mixing a Nb2O5 powder, a K2Co3 powder, and a Na2Co3 powder, pulverizing the mixed powder to achieve a grain size d50 of 100 ?m or less, and performing hot press sintering to the obtained pulverized powder in an inert gas or vacuum atmosphere under conditions of a temperature of 900° C. or higher and less than 1150° C., and a load of 150 to 400 kgf/cm2. The present invention aims to provide a high density potassium sodium niobate sputtering target capable of industrially depositing potassium sodium niobate films via the sputtering method.
    Type: Application
    Filed: February 15, 2019
    Publication date: November 26, 2020
    Inventors: Ryosuke Sakashita, Hiroshi Takamura, Atsushi Nara, Ryo Suzuki
  • Publication number: 20200340096
    Abstract: A sputtering target formed from a potassium sodium niobate sintered body to which a dopant has been added; as a dopant, the sputtering target includes one or more types among Li, Mg, Ca, Sr, Ba, Bi, Sb, V, In, Ta, Mo, W, Cr, Ti, Zr, Hf, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Cu, Zn, Ag, Mn, Fe, Co, Ni, Al, Si, Ge, Sn, and Ga; and a variation coefficient of a dopant concentration in a plane of the sputtering target is 0.12 or less. In terms of suppressing the generation of particles, provided is a sputtering target which is formed from a sintered body that includes potassium sodium niobate and to which a dopant has been added.
    Type: Application
    Filed: April 8, 2020
    Publication date: October 29, 2020
    Inventors: Ryosuke Sakashita, Yoshitaka Shibuya
  • Publication number: 20200258724
    Abstract: A sputtering target-backing plate assembly obtained by bonding a sputtering target and a backing plate using a brazing material, wherein a braze bonding layer which bonds the sputtering target and the backing plate contains a material having thermal conductivity that is higher than that of the brazing material in an amount of 5 vol % or more and 50 vol % or less, and a thickness of the braze bonding layer is 100 ?m or more and 700 ?m or less. An object is to prevent the seepage of the brazing material while maintaining the thickness of the braze bonding layer.
    Type: Application
    Filed: January 28, 2020
    Publication date: August 13, 2020
    Inventors: Ryosuke Sakashita, Yosuke Endo, Naoki Ise, Hiroshi Takamura
  • Patent number: 10685820
    Abstract: A sputtering target formed from monocrystalline silicon is provided, wherein a sputter surface of the sputtering target is a plane inclined at an angle that exceeds 1° and is less than 10° from a {100} plane. The sputtering target formed from monocrystalline silicon provides a sputtering target which yields superior mechanical strength as well as exhibiting a sputter performance which is equivalent to that of a {100} plane. From a different perspective, in addition to superior mechanical strength, the monocrystalline silicon sputtering target yields superior particle characteristics, sputtering rate, crack resistance, surface shape uniformity and other characteristics.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: June 16, 2020
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventors: Hiroshi Takamura, Ryosuke Sakashita, Shuhei Murata
  • Publication number: 20180282859
    Abstract: A sputtering target-backing plate assembly in which a Si sputtering target is bonded to a backing plate by way of a brazing material, wherein the brazing material has a melting point of 200° C. or higher and a bonding strength of 0.16 kgf/cm2 or higher. An object is to provide a sputtering target-backing plate assembly in which a Si sputtering target is bonded to a backing plate by way of a brazing material, wherein the sputtering target-backing plate assembly has a high bonding strength and is free from separation even under high temperature sputtering conditions such as during high power sputtering.
    Type: Application
    Filed: March 28, 2018
    Publication date: October 4, 2018
    Inventors: Hiroshi Takamura, Ryosuke Sakashita
  • Publication number: 20180226236
    Abstract: A sputtering target formed from monocrystalline silicon is provided, wherein a sputter surface of the sputtering target is a plane inclined at an angle that exceeds 1° and is less than 10° from a {100} plane. The sputtering target formed from monocrystalline silicon provides a sputtering target which yields superior mechanical strength as well as exhibiting a sputter performance which is equivalent to that of a {100} plane. From a different perspective, in addition to superior mechanical strength, the monocrystalline silicon sputtering target yields superior particle characteristics, sputtering rate, crack resistance, surface shape uniformity and other characteristics.
    Type: Application
    Filed: February 6, 2018
    Publication date: August 9, 2018
    Inventors: Hiroshi Takamura, Ryosuke Sakashita, Shuhei Murata