Patents by Inventor Ryousuke Dohi

Ryousuke Dohi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9870006
    Abstract: A pressure type flow control system with flow monitoring includes an inlet side passage, a control valve comprising a pressure-type flow control unit connected downstream of the inlet side passage, a thermal-type flow sensor connected downstream of the control valve, an orifice installed on a fluid passage connected downstream of the thermal-type flow sensor, a temperature sensor provided near the fluid passage between the control valve and orifice, a pressure sensor provided for the fluid passage between the control valve and orifice, an outlet side passage connected to the orifice, and a control unit comprising a pressure-type flow rate arithmetic and control unit to which a pressure signal from the pressure sensor and a temperature signal from the temperature sensor are input, and which computes a flow rate value of fluid flowing through the orifice, and outputs a control signal to a valve drive unit of the control valve.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: January 16, 2018
    Assignee: Fujikin Incorporated
    Inventors: Kaoru Hirata, Ryousuke Dohi, Kouji Nishino, Nobukazu Ikeda, Katsuyuki Sugita
  • Patent number: 9841770
    Abstract: The pressure-type flow control device includes: a main body provided with a fluid channel communicating between a fluid inlet and a fluid outlet and an exhaust channel communicating between the fluid channel and an exhaust outlet; a pressure control valve fixed to a fluid inlet side of the main body for opening or closing the upstream side of the fluid channel; a first pressure sensor for detecting the internal pressure of the fluid channel on the downstream side of the control valve; an orifice provided in the fluid channel on the downstream side of the point of branching of the exhaust channel; an on/off valve for opening or closing the fluid channel on the downstream side of the first pressure sensor; and an exhaust valve for opening or closing the exhaust channel.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: December 12, 2017
    Assignee: FUJIKIN INCORPORATED
    Inventors: Kaoru Hirata, Nobukazu Ikeda, Kouji Nishino, Ryousuke Dohi, Katsuyuki Sugita, Masaaki Nagase
  • Publication number: 20170254430
    Abstract: A piezoelectric element-driven valve includes a body provided with a fluid channel and a valve seat, a valve element which opens and closes the fluid channel by being in contact with and separated from the valve seat of the body, and piezoelectric actuators which drive the valve element to open and close by means of the extension of the piezoelectric element. In the piezoelectric element-driven valve, at least two piezoelectric actuators are arranged on a straight line via a spacer which allows pulling out of wiring.
    Type: Application
    Filed: August 17, 2015
    Publication date: September 7, 2017
    Inventors: Kaoru Hirata, Katsuyuki Sugita, Ryousuke Dohi, Kouji Nishino, Nobukazu Ikeda
  • Patent number: 9746856
    Abstract: A multi-hole orifice plate for flow control includes an orifice plate for controlling the flow rate of a fluid, wherein the opening area of one orifice necessary for the passage of a predetermined flow rate of fluid is divided to provide a plurality of orifices having a total opening area equal to said opening area.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: August 29, 2017
    Assignee: FUJIKIN INCORPORATED
    Inventors: Kaoru Hirata, Atsushi Hidaka, Masaaki Nagase, Ryousuke Dohi, Nobukazu Ikeda, Kouji Nishino, Katsuyuki Sugita, Takashi Hirose
  • Publication number: 20170234455
    Abstract: A pressure type flow control system with flow monitoring includes an inlet, a control valve including a pressure flow control unit connected downstream of the inlet, a thermal flow sensor connected downstream of the control valve, an orifice installed on a fluid passage communicatively connected downstream of the thermal flow sensor, a temperature sensor provided near the fluid passage between the control valve and orifice, a pressure sensor provided for the fluid passage between the control valve and orifice, an outlet communicatively connected to the orifice, and a control unit including a pressure type flow rate arithmetic and control unit receiving a pressure signal from the pressure sensor and a temperature signal from the temperature sensor, and a flow sensor control unit to which a flow rate signal from the thermal flow sensor is input.
    Type: Application
    Filed: March 6, 2017
    Publication date: August 17, 2017
    Inventors: Kaoru Hirata, Ryousuke Dohi, Kouji Nishino, Nobukazu Ikeda, Katsuyuki Sugita
  • Publication number: 20170212531
    Abstract: The pressure-type flow controller includes a main body provided with a fluid passage, a control valve for pressure control fixed in a horizontal position to the main body, an on/off valve fixed in a vertical position to the main body on the downstream side of the control valve for pressure control, an orifice provided in the fluid passage on the upstream side of the on/off valve, and a pressure sensor fixed to the main body for detecting the internal pressure of the fluid passage between the control valve for pressure control and the orifice. The fluid passage includes a first passage portion in a horizontal position connected to the control valve for pressure control, a second passage portion in a vertical position connecting the first passage portion to the orifice, and a third passage portion in a horizontal position connecting the second passage portion to the pressure sensor.
    Type: Application
    Filed: July 9, 2015
    Publication date: July 27, 2017
    Applicant: FUJIKIN INCORPORATED
    Inventors: Masaaki NAGASE, Kaoru HIRATA, Ryousuke DOHI, Kouji NISHINO, Nobukazu IKEDA
  • Patent number: 9702781
    Abstract: There is provided a leakage detection device which can be reduced in size and attached to a leakage detection target member, such as a fluid controller, all the time, and thus, can monitor leakage of fluid all the time, and a fluid controller having the same. A fluid controller is configured by a fluid controller main body and a leakage detection device which is attached to the fluid controller main body. In the fluid controller main body, a leakage port for detecting the leakage is provided. The leakage detection device includes a sensor holding body which is attached to the fluid controller main body; an ultrasonic sensor which is held by the sensor holding body to face the leakage port; an ultrasonic passage provided between a sensor surface of the ultrasonic sensor and the leakage port; and a processing circuit for processing an ultrasonic wave obtained by the ultrasonic sensor.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: July 11, 2017
    Assignee: FUJIKIN INCORPORATED
    Inventors: Ryousuke Dohi, Tsutomu Shinohara, Kouji Nishino, Toshio Doh, Nobukazu Ikeda, Michio Yamaji
  • Patent number: 9651467
    Abstract: This invention is related to an optical-analysis-type raw material fluid density detector including a detector main body and a light oscillation unit and a light detection unit that are provided on the upper surface or the under surface of the detector main body, in which the detector main body has at least one recess formed in the upper surface and the under surface, a fluid flow path connecting a fluid inlet of the detector main body to the recess, a fluid flow path connecting the recesses to each other, and a fluid flow path connecting the recess to a fluid outlet of the detector main body; the light oscillation unit is disposed in the recess that is closest to the inlet; and light detection units are disposed in the remaining recesses.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: May 16, 2017
    Assignees: TOKUSHIMA UNIVERSITY, FUJKIN INCORPORATED
    Inventors: Yoshihiro Deguchi, Masaaki Nagase, Ryousuke Dohi, Nobukazu Ikeda, Kouji Nishino, Michio Yamaji, Tadayuki Yakushijin
  • Patent number: 9638560
    Abstract: In a gas supply device supplying many different gases to a gas use portion through many flow rate controllers, a flow rate controller calibration unit includes a build-up tank with inner volume, an inlet side on-off valve and an outlet side on-off valve V2 of the tank, and a gas pressure detector and a gas temperature detector for gas inside the tank, joined in a branched form to a gas supply line, with the valve V2 connected to vacuum. The calibration unit is used to calibrate a flow rate controller based on performing a first measurement of gas temperature and pressure inside the tank, and then building-up gas into the tank, and then performing a second measurement of gas temperature and pressure, and from respective measured values, calculating gas flow rate Q and by comparing a set gas flow rate and calculated gas flow rate Q, performing flow rate calibration.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: May 2, 2017
    Assignee: FUJIKIN INCORPORATED
    Inventors: Masaaki Nagase, Nobukazu Ikeda, Yohei Sawada, Tooru Hirai, Kazuyuki Morisaki, Kouji Nishino, Ryousuke Dohi
  • Patent number: 9632511
    Abstract: A pressure type flow control system with flow monitoring includes an inlet, a control valve including a pressure flow control unit connected downstream of the inlet, a thermal flow sensor connected downstream of the control valve, an orifice installed on a fluid passage communicatively connected downstream of the thermal flow sensor, a temperature sensor provided near the fluid passage between the control valve and orifice, a pressure sensor provided for the fluid passage between the control valve and orifice, an outlet communicatively connected to the orifice, and a control unit including a pressure type flow rate arithmetic and control unit receiving a pressure signal from the pressure sensor and a temperature signal from the temperature sensor, and a flow sensor control unit to which a flow rate signal from the thermal flow sensor is input.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: April 25, 2017
    Assignee: FUJIKIN INCORPORATED
    Inventors: Kaoru Hirata, Ryousuke Dohi, Kouji Nishino, Nobukazu Ikeda, Katsuyuki Sugita
  • Patent number: 9574917
    Abstract: A pressure type flow rate control device provides flow rate control for gas at 100-500° C. with an error not more than 1.0% F.S. The pressure type flow rate control device includes a valve body with a fluid passage, a valve portion interposed in the passage, a valve drive unit driving the valve portion to open/close the passage, a restriction mechanism on the downstream side of the valve portion in the passage, a temperature detector detecting gas temperature between the valve portion and restriction mechanism, a pressure detector detecting gas pressure between the valve portion and restriction mechanism, and an arithmetic control device controlling flow rate of gas in the restriction mechanism based on values detected by the temperature detector and the pressure detector, wherein the temperature detector is inserted in an attachment hole of the valve body at a position just above an outlet side fluid passage.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: February 21, 2017
    Assignee: FUJIKIN INCORPORATED
    Inventors: Atsushi Hidaka, Masaaki Nagase, Ryousuke Dohi, Nobukazu Ikeda, Kouji Nishino
  • Publication number: 20170037987
    Abstract: A flow passage sealing structure for omitting a process of welding or caulking an orifice plate and a filter plate to an orifice base and a filter base as base materials and allowing further miniaturization, includes a main block (1) including main flow passages (1a, 1b), recessed portions (12, 13) provided in side surfaces of the main block and having female screws in inner peripheral surfaces, thin plates (6, 8) abutting against the bottom surfaces of the recessed portions and having through holes, gasket rings (16, 17) abutting against the thin plates (6, 8), pressing pipelines (20, 21) having large-diameter portions and internal flow passages communicable with the main flow passages (1a, 1b) and abutting against the gasket rings, and fastening screws (22) abutting against the large-diameter portions and pressing the pressing pipelines by being inserted around the outside of the pressing pipelines and screwed into the female screws.
    Type: Application
    Filed: December 22, 2014
    Publication date: February 9, 2017
    Inventors: Ryousuke DOHI, Naofumi YASUMOTO, Kouji NISHINO, Nobukazu IKEDA
  • Patent number: 9556518
    Abstract: A raw material gas supply apparatus includes a liquid raw material gas supply source, a source tank storing liquid raw material, a gas distribution passage through which raw material gas comprising steam of the liquid raw material is supplied to a process chamber from the source tank, an automatic pressure regulator installed on an upstream side of the gas passage, wherein the automatic pressure regulator keeps supply pressure of the raw material gas at a set value, a supply gas switching valve installed on a downstream side of the gas passage, wherein this valve opens and closes the gas passage, an orifice provided on at least one of an inlet side or outlet side of the valve, wherein the orifice regulates flow rate of the raw material gas, and a constant temperature heating device heats the source tank, the gas passage, the valve and the orifice to a set temperature.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: January 31, 2017
    Assignee: FUJIKIN INCORPORATED
    Inventors: Masaaki Nagase, Atsushi Hidaka, Kaoru Hirata, Ryousuke Dohi, Kouji Nishino, Nobukazu Ikeda
  • Publication number: 20160370808
    Abstract: A pressure type flow control system with flow monitoring includes an inlet side passage, a control valve comprising a pressure-type flow control unit connected downstream of the inlet side passage, a thermal-type flow sensor connected downstream of the control valve, an orifice installed on a fluid passage connected downstream of the thermal-type flow sensor, a temperature sensor provided near the fluid passage between the control valve and orifice, a pressure sensor provided for the fluid passage between the control valve and orifice, an outlet side passage connected to the orifice, and a control unit comprising a pressure-type flow rate arithmetic and control unit to which a pressure signal from the pressure sensor and a temperature signal from the temperature sensor are input, and which computes a flow rate value of fluid flowing through the orifice, and outputs a control signal to a valve drive unit of the control valve.
    Type: Application
    Filed: June 21, 2016
    Publication date: December 22, 2016
    Inventors: Kaoru Hirata, Ryousuke Dohi, Kouji Nishino, Nobukazu Ikeda, Katsuyuki Sugita
  • Publication number: 20160363231
    Abstract: A piezoelectric linear actuator includes a laminated piezoelectric actuator, a lower support member that supports the laminated piezoelectric actuator, a pressing member that biases the laminated piezoelectric actuator from the top thereof, a guide member connected to the lower support member to guide the pressing member; and a displacement transmission member which includes a pair of displacement transmission plates, an adjustment screw connected to the pair of displacement transmission plates, an output section connected to the pair of displacement transmission plates, and an elastic body that biases the output section downward.
    Type: Application
    Filed: February 10, 2015
    Publication date: December 15, 2016
    Applicant: Fujikin Incorporated
    Inventors: Naofumi Yasumoto, Ryousuke Dohi, Kouji Nishino, Nobukazu Ikeda, Kohei Shigyou
  • Publication number: 20160349763
    Abstract: A pressure-type flow rate controller includes a body provided with a fluid passage which communicates a fluid inlet and a fluid outlet, a control valve for pressure control fixed to the body to open and close the fluid passage, an orifice arranged in the course of the fluid passage on the downstream side of the control valve, and a pressure sensor fixed to the body to detect the internal pressure of the fluid passage between the control valve and the orifice, wherein the fluid passage comprises a first passage portion communicating the control valve and a pressure detection chamber provided on a pressure detection surface of the pressure sensor, and a second passage portion spaced away from the first passage portion and communicating the pressure detection chamber and the orifice.
    Type: Application
    Filed: November 25, 2014
    Publication date: December 1, 2016
    Inventors: Takashi Hirose, Toshihide Yoshida, Atsushi Matsumoto, Kaoru Hirata, Nobukazu Ikeda, Kouji Nishino, Ryousuke Dohi, Katsuyuki Sugita
  • Patent number: 9507352
    Abstract: In a variable orifice type pressure-controlled flow controller that includes a pressure control unit and a variable orifice unit, computes a flow rate of a fluid distributed through an orifice of the variable orifice unit as QP1=KP1 (P1 is an orifice upstream side pressure and K is a constant), and switches a flow control range and performs flow control in the flow control range by changing a set flow rate signal Qs for a flow rate arithmetic and control unit of the pressure control unit and an orifice opening degree setting signal Qz for an orifice opening degree arithmetic and control unit of the variable orifice unit, the variable orifice unit includes the orifice opening degree arithmetic and control unit.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: November 29, 2016
    Assignee: FUJIKIN INCORPORATED
    Inventors: Ryousuke Dohi, Kouji Nishino, Yohei Sawada, Nobukazu Ikeda
  • Patent number: 9494947
    Abstract: A pressure type flow control system with flow monitoring includes an inlet side passage, a control valve comprising a pressure-type flow control unit connected downstream of the inlet side passage, a thermal-type flow sensor connected downstream of the control valve, an orifice installed on a fluid passage connected downstream of the thermal-type flow sensor, a temperature sensor provided near the fluid passage between the control valve and orifice, a pressure sensor provided for the fluid passage between the control valve and orifice, an outlet side passage connected to the orifice, and a control unit comprising a pressure-type flow rate arithmetic and control unit to which a pressure signal from the pressure sensor and a temperature signal from the temperature sensor are input, and which computes a flow rate value of fluid flowing through the orifice, and outputs a control signal to a valve drive unit of the control valve.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: November 15, 2016
    Assignee: FUJIKIN INCORPORATED
    Inventors: Kaoru Hirata, Ryousuke Dohi, Kouji Nishino, Nobukazu Ikeda, Katsuyuki Sugita
  • Publication number: 20160327963
    Abstract: The pressure-type flow control device includes: a main body provided with a fluid channel communicating between a fluid inlet and a fluid outlet and an exhaust channel communicating between the fluid channel and an exhaust outlet; a pressure control valve fixed to a fluid inlet side of the main body for opening or closing the upstream side of the fluid channel; a first pressure sensor for detecting the internal pressure of the fluid channel on the downstream side of the control valve; an orifice provided in the fluid channel on the downstream side of the point of branching of the exhaust channel; an on/off valve for opening or closing the fluid channel on the downstream side of the first pressure sensor; and an exhaust valve for opening or closing the exhaust channel.
    Type: Application
    Filed: January 15, 2015
    Publication date: November 10, 2016
    Applicant: FUJIKIN INCORPORATED
    Inventors: Kaoru HIRATA, Nobukazu IKEDA, Kouji NISHINO, Ryousuke DOHI, Katsuyuki SUGITA, Masaaki NAGASE
  • Patent number: 9477232
    Abstract: An apparatus for dividing and supplying gas is provided with a flow rate control device, a plurality of divided flow passages of gas flowing from the flow rate control device, thermal-type mass flow sensors disposed to the divided flow passages, electrically-operated valves disposed on a downstream side of the thermal-type mass flow sensors, controllers that control the electrically-operated valves, and a flow ratio setting calculator that calculates a total flow rate, then calculates flow rates of the divided flow passages, and then inputs the calculated flow rates as set flow rates to each controllers. One of the divided flow passages with the highest set flow rate is put in an uncontrolled state, and opening degree for each of the rest divided flow passages is controlled, and then feedback control of the divided flow rate of each of the divided flow passages is implemented by each of the controllers.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: October 25, 2016
    Assignees: FUJIKIN INCORPORATED, TOKYO ELECTRON LIMITED
    Inventors: Eiji Takahashi, Norikazu Sasaki, Atsushi Sawachi, Yohei Sawada, Nobukazu Ikeda, Ryousuke Dohi, Kouji Nishino