Patents by Inventor Saban Kurucay

Saban Kurucay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940512
    Abstract: Methods and systems are provided for cooling hot spots on a body coil assembly of an MRI system. In one embodiment, an airflow guide of a body coil assembly of an MRI system comprises a first surface that forms an air passage when the airflow guide is positioned on the body coil assembly, the air passage enclosed by the first surface and a second, outer surface of an RF coil of the body coil assembly, the airflow guide configured to channel cool air generated by a fan to the second, outer surface of the RF coil. The airflow guide may be arranged circumferentially around a portion of the RF coil at one or more ends of the RF coil. The airflow guide may be manufactured as a plurality of airflow guide segments that are glued together.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: March 26, 2024
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Yanchun Zheng, Hong Jiang, Kun Wang, Huaiyu Dong, Hailiang Liu, Saban Kurucay, Jian Cao
  • Publication number: 20240065571
    Abstract: An embodiment of the present invention provides a scanning control system for a magnetic resonance imaging system, comprising: a first 3D camera, configured to capture a three-dimensional image of a scan subject located on a scanning table of the magnetic resonance imaging system; a processing device, configured to identify body position information of the scan subject based on the three-dimensional image; and a control device, configured to set scanning parameters related to a body position based on the body position information.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Inventors: Qingyu Dai, Yanting Huo, Jiabin Yao, Saban Kurucay, Jonathan C. West, Yuwen Li
  • Publication number: 20240061058
    Abstract: Methods and systems are provided for cooling hot spots on a body coil assembly of an MRI system. In one embodiment, an airflow guide of a body coil assembly of an MRI system comprises a first surface that forms an air passage when the airflow guide is positioned on the body coil assembly, the air passage enclosed by the first surface and a second, outer surface of an RF coil of the body coil assembly, the airflow guide configured to channel cool air generated by a fan to the second, outer surface of the RF coil. The airflow guide may be arranged circumferentially around a portion of the RF coil at one or more ends of the RF coil. The airflow guide may be manufactured as a plurality of airflow guide segments that are glued together.
    Type: Application
    Filed: August 18, 2022
    Publication date: February 22, 2024
    Inventors: Yanchun Zheng, Hong Jiang, Kun Wang, Huaiyu Dong, Hailiang Liu, Saban Kurucay, Jian Cao
  • Patent number: 11844599
    Abstract: An embodiment of the present invention provides a scanning control system for a magnetic resonance imaging system, comprising: a first 3D camera, configured to capture a three-dimensional image of a scan subject located on a scanning table of the magnetic resonance imaging system; a processing device, configured to identify body position information of the scan subject based on the three-dimensional image; and a control device, configured to set scanning parameters related to a body position based on the body position information.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: December 19, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Qingyu Dai, Yanting Huo, Jiabin Yao, Saban Kurucay, Jonathan C West, Yuwen Li
  • Publication number: 20210153767
    Abstract: An embodiment of the present invention provides a scanning control system for a magnetic resonance imaging system, comprising: a first 3D camera, configured to capture a three-dimensional image of a scan subject located on a scanning table of the magnetic resonance imaging system; a processing device, configured to identify body position information of the scan subject based on the three-dimensional image; and a control device, configured to set scanning parameters related to a body position based on the body position information.
    Type: Application
    Filed: November 18, 2020
    Publication date: May 27, 2021
    Inventors: Qingyu Dai, Yanting Huo, Jiabin Yao, Saban Kurucay, Jonathan C West, Yuwen Li
  • Patent number: 10877118
    Abstract: The embodiments disclosed herein relate generally to magnetic resonance imaging systems and, more specifically, to the manufacturing of a gradient coil assembly for magnetic resonance imaging (MRI) systems. For example, in one embodiment, a method of manufacturing a gradient coil assembly for a magnetic resonance imaging system includes depositing a first layer comprising a base material onto a surface to form a substrate and depositing a second layer onto the first layer. The second layer may enable bonding between a conductor material and the substrate. The method also includes depositing a third layer onto the second layer using a consolidation process. The consolidation process uses the conductor material to form at least a portion of a gradient coil.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: December 29, 2020
    Assignee: GE Precision Healthcare LLC
    Inventors: Jean-Baptiste Mathieu, Saban Kurucay, Thomas Kwok-Fah Foo, Yanzhe Yang
  • Publication number: 20180100905
    Abstract: The embodiments disclosed herein relate generally to magnetic resonance imaging systems and, more specifically, to the manufacturing of a gradient coil assembly for magnetic resonance imaging (MRI) systems. For example, in one embodiment, a method of manufacturing a gradient coil assembly for a magnetic resonance imaging system includes depositing a first layer comprising a base material onto a surface to form a substrate and depositing a second layer onto the first layer. The second layer may enable bonding between a conductor material and the substrate. The method also includes depositing a third layer onto the second layer using a consolidation process. The consolidation process uses the conductor material to form at least a portion of a gradient coil.
    Type: Application
    Filed: December 13, 2017
    Publication date: April 12, 2018
    Inventors: Jean-Baptiste Mathieu, Saban Kurucay, Thomas Kwok-Fah Foo, Yanzhe Yang
  • Patent number: 9869734
    Abstract: The embodiments disclosed herein relate generally to magnetic resonance imaging systems and, more specifically, to the manufacturing of a gradient coil assembly for magnetic resonance imaging (MRI) systems. For example, in one embodiment, a method of manufacturing a gradient coil assembly for a magnetic resonance imaging system includes depositing a first layer comprising a base material onto a surface to form a substrate and depositing a second layer onto the first layer. The second layer may enable bonding between a conductor material and the substrate. The method also includes depositing a third layer onto the second layer using a consolidation process. The consolidation process uses the conductor material to form at least a portion of a gradient coil.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: January 16, 2018
    Assignee: General Electric Company
    Inventors: Jean-Baptiste Mathieu, Saban Kurucay, Thomas Kwok-Fah Foo, Yanzhe Yang
  • Publication number: 20140302258
    Abstract: The embodiments disclosed herein relate generally to magnetic resonance imaging systems and, more specifically, to the manufacturing of a gradient coil assembly for magnetic resonance imaging (MRI) systems. For example, in one embodiment, a method of manufacturing a gradient coil assembly for a magnetic resonance imaging system includes depositing a first layer comprising a base material onto a surface to form a substrate and depositing a second layer onto the first layer. The second layer may enable bonding between a conductor material and the substrate. The method also includes depositing a third layer onto the second layer using a consolidation process. The consolidation process uses the conductor material to form at least a portion of a gradient coil.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 9, 2014
    Applicant: General Electric Company
    Inventors: Jean-Baptiste Mathieu, Saban Kurucay, Thomas Kwok-Fah Foo, Yanzhe Yang
  • Patent number: 8362776
    Abstract: A method, system, and apparatus including a radio-frequency (RF) phased coil array for a magnetic resonance (MR) imaging apparatus that includes a first RF coil element tuned to a first frequency and configured to receive MR signals and a second RF coil element tuned to a second frequency different than the first frequency and configured to receive MR signals.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: January 29, 2013
    Assignee: General Electric Company
    Inventors: Dashen Chu, Robert S. Stormont, Saban Kurucay, Scott A. Lindsay, Ricardo M. Matias, Anthony D. Defranco
  • Patent number: 8207736
    Abstract: A method, system, and apparatus including a magnetic resonance (MR) coil system that includes an MR coil element, a high input Pre-amplifier having a high input impedance field-effect-transistor (FET) with an impedance of one of substantially equal to 500 ohms and greater than 500 ohms, and a conductive path. The conductive path has a first end coupled to the MR coil element and a second end coupled to the high input Pre-amplifier such that the MR coil element is coupled in series with the high input Pre-amplifier. Further, the conductive path is free of a matching network intervening between the MR coil element and the high input Pre-amplifier.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: June 26, 2012
    Assignee: General Electric Company
    Inventors: Dashen Chu, Robert S. Stormont, Saban Kurucay, Scott A. Lindsay, Ricardo M. Matias, Anthony D. Defranco
  • Publication number: 20110074425
    Abstract: A method, system, and apparatus including a magnetic resonance (MR) coil system that includes an MR coil element, a high input Pre-amplifier having a high input impedance field-effect-transistor (FET) with an impedance of one of substantially equal to 500 ohms and greater than 500 ohms, and a conductive path. The conductive path has a first end coupled to the MR coil element and a second end coupled to the high input Pre-amplifier such that the MR coil element is coupled in series with the high input Pre-amplifier. Further, the conductive path is free of a matching network intervening between the MR coil element and the high input Pre-amplifier.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Inventors: Dashen Chu, Robert S. Stormont, Saban Kurucay, Scott A. Lindsay, Ricardo M. Matias, Anthony D. Defranco
  • Publication number: 20110074415
    Abstract: A method, system, and apparatus including a radio-frequency (RF) phased coil array for a magnetic resonance (MR) imaging apparatus that includes a first RF coil element tuned to a first frequency and configured to receive MR signals and a second RF coil element tuned to a second frequency different than the first frequency and configured to receive MR signals.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Inventors: Dashen Chu, Robert S. Stormont, Saban Kurucay, Scott A. Lindsay, Ricardo M. Matias, Anthony D. Defranco
  • Patent number: 6483308
    Abstract: Three MRI acquisitions are performed to acquire data from which separate water and fat images may be reconstructed using a three-point Dixon technique. The NMR data is acquired with a phased array coil having four separate coil elements. Low resolution images are reconstructed from the acquired NMR data sets and used to calculate phase corrections which are used to correct reconstructed high resolution images. The corrected high resolution images are processed using the Dixon technique to produce fat and water images for each coil element which are combined into a single fat and a single water image.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: November 19, 2002
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Jingfei Ma, Guosheng Tan, Saban Kurucay
  • Patent number: 6294913
    Abstract: Monitor signals are acquired in an interleaved manner during a scan with an MRI system. Frequency changes caused by variations in the polarizing magnetic field B0 are measured using the monitor signals, and these measured frequency changes are employed to compensate image data acquired during the scan.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: September 25, 2001
    Assignee: GE Medical Systems Global Technology Company LLC
    Inventors: Richard Scott Hinks, Robert A. Kraft, Saban Kurucay