Patents by Inventor Sabena Uddowla

Sabena Uddowla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180346553
    Abstract: This disclosure pertains to isolated antibodies or antigen binding fragments thereof that specifically bind to the 3ABC non-structural protein of Foot-and-Mouth Disease virus (FMDV), wherein the antibodies or antigen binding fragments thereof recognize the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6 or SEQ ID NO: 12. Accordingly, this disclosure also pertains to polypeptides having an amino acid sequence selected from SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: 12. Monoclonal antibody Mab 40C8 is also provided. The current disclosure also pertains to methods of detecting FMDV infection in an animal (including assays differentiating infected animals from vaccinated animals (DIVA)) and kits for performing the detection methods.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 6, 2018
    Inventors: ALFONSO CLAVIJO, AIDA ELIZABETH RIEDER, ABU SAYED, MANGKEY A. BOUNPHENG, THOMAS G. BURRAGE, BROOKE A. DANCHO, SABENA UDDOWLA BLAKENEY
  • Patent number: 10035841
    Abstract: This disclosure pertains to isolated antibodies or antigen binding fragments thereof that specifically bind to the 3ABC non-structural protein of Foot-and-Mouth Disease virus (FMDV), wherein the antibodies or antigen binding fragments thereof recognize the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6 or SEQ ID NO: 12. Accordingly, this disclosure also pertains to polypeptides having an amino acid sequence selected from SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: 12. Monoclonal antibody Mab 40C8 is also provided. The current disclosure also pertains to methods of detecting FMDV infection in an animal (including assays differentiating infected animals from vaccinated animals (DIVA)) and kits for performing the detection methods.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: July 31, 2018
    Assignees: THE TEXAS A&M UNIVERSITY SYSTEM, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF AGRICULTURE, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF HOMELAND SECURITY
    Inventors: Alfonso Clavijo, Aida Elizabeth Rieder, Abu Sayed, Mangkey A. Bounpheng, Thomas G. Burrage, Brooke A. Dancho, Sabena Uddowla Blakeney
  • Publication number: 20170218053
    Abstract: This disclosure pertains to isolated antibodies or antigen binding fragments thereof that specifically bind to the 3ABC non-structural protein of Foot-and-Mouth Disease virus (FMDV), wherein the antibodies or antigen binding fragments thereof recognize the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6 or SEQ ID NO: 12. Accordingly, this disclosure also pertains to polypeptides having an amino acid sequence selected from SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: 12. Monoclonal antibody Mab 40C8 is also provided. The current disclosure also pertains to methods of detecting FMDV infection in an animal (including assays differentiating infected animals from vaccinated animals (DIVA)) and kits for performing the detection methods.
    Type: Application
    Filed: January 29, 2016
    Publication date: August 3, 2017
    Inventors: ALFONSO CLAVIJO, AIDA ELIZABETH RIEDER, ABU SAYED, MANGKEY A. BOUNPHENG, THOMAS G. BURRAGE, BROOKE A. DANCHO, SABENA UDDOWLA BLAKENEY
  • Patent number: 9180179
    Abstract: We have generated novel molecularly marked FMDV A24LL3DYR and A24LL3BPVKV3DYR vaccine candidates. The mutant viruses contain a deletion of the leader coding region (LL) rendering the virus attenuated in vivo and negative antigenic markers introduced in one or both of the viral non-structural 3Dpol and 3B proteins. The vaccine platform includes unique restriction endonuclease sites for easy swapping of capsid proteins for different FMDV subtypes and serotypes. The mutant viruses produced no signs of FMD and no shedding of virulent virus in cattle. No clinical signs of disease or fever were observed and no transmission to in-contact animals was detected in pigs inoculated with live A24LL3DYR. Cattle immunized with chemically inactivated vaccine candidates showed an efficacy comparable to a polyvalent commercial FMDV vaccine. These vaccine candidates used in conjunction with a cELISA provide a suitable target for DIVA companion tests.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: November 10, 2015
    Assignee: The United States of America, as represented by The Secretary of Agriculture
    Inventors: Aida E. Rieder, Luis L. Rodriguez, Jason R. Hollister, Sabena Uddowla
  • Patent number: 8765141
    Abstract: We have generated novel molecularly marked FMDV A24LL3DYR and A24LL3BPVKV3DYR vaccine candidates. The mutant viruses contain a deletion of the leader coding region (LL) rendering the virus attenuated in vivo and negative antigenic markers introduced in one or both of the viral non-structural 3Dpol and 3B proteins. The vaccine platform includes unique restriction endonuclease sites for easy swapping of capsid proteins for different FMDV subtypes and serotypes. The mutant viruses produced no signs of FMD and no shedding of virulent virus in cattle. No clinical signs of disease or fever were observed and no transmission to in-contact animals was detected in pigs inoculated with live A24LL3DYR. Cattle immunized with chemically inactivated vaccine candidates showed an efficacy comparable to a polyvalent commercial FMDV vaccine. These vaccine candidates used in conjunction with a cELISA provide a suitable target for DIVA companion tests.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: July 1, 2014
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Aida E. Rieder, Luis L. Rodriguez, Jason R. Hollister, Sabena Uddowla
  • Publication number: 20120315295
    Abstract: We have generated novel molecularly marked FMDV A24LL3DYR and A24LL3BPVKV3DYR vaccine candidates. The mutant viruses contain a deletion of the leader coding region (LL) rendering the virus attenuated in vivo and negative antigenic markers introduced in one or both of the viral non-structural 3Dpol and 3B proteins. The vaccine platform includes unique restriction endonuclease sites for easy swapping of capsid proteins for different FMDV subtypes and serotypes. The mutant viruses produced no signs of FMD and no shedding of virulent virus in cattle. No clinical signs of disease or fever were observed and no transmission to in-contact animals was detected in pigs inoculated with live A24LL3DYR. Cattle immunized with chemically inactivated vaccine candidates showed an efficacy comparable to a polyvalent commercial FMDV vaccine. These vaccine candidates used in conjunction with a cELISA provide a suitable target for DIVA companion tests.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 13, 2012
    Inventors: Aida E. Rieder, Luis L. Rodriguez, Jason R. Hollister, Sabena Uddowla