Patents by Inventor Sachin S. Chandran

Sachin S. Chandran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200170960
    Abstract: The invention provides a nanoparticle composition that is decorated with a urea-based small-molecule peptidomimetic inhibitor of prostate specific membrane antigen (PSMA), which is expressed by almost all solid tumors. This strategy takes advantage of both the avidity of the functionalized nanoparticle for binding to PSMA and the ability of the nanoparticle to be retained for longer periods of time in the tumor due to enhanced leakage via EPR into the tumor interstitium and poor clearance due to underdeveloped or non-existent lymphatics within the tumor.
    Type: Application
    Filed: July 8, 2019
    Publication date: June 4, 2020
    Inventors: Sachin S. Chandran, Sangeeta Ray, Martin G. Pomper, Samuel R. Denmeade, Ronnie C. Mease
  • Patent number: 10369113
    Abstract: The invention provides a nanoparticle composition that is decorated with a urea-based small-molecule peptidomimetic inhibitor of prostate specific membrane antigen (PSMA), which is expressed by almost all solid tumors. This strategy takes advantage of both the avidity of the functionalized nanoparticle for binding to PSMA and the ability of the nanoparticle to be retained for longer periods of time in the tumor due to enhanced leakage via EPR into the tumor interstitium and poor clearance due to underdeveloped or non-existent lymphatics within the tumor.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: August 6, 2019
    Assignee: The Johns Hopkins University
    Inventors: Sachin S. Chandran, Sangeeta Ray, Martin G. Pomper, Samuel R. Denmeade, Ronnie C. Mease
  • Publication number: 20170135961
    Abstract: The invention provides a nanoparticle composition that is decorated with a urea-based small-molecule peptidomimetic inhibitor of prostate specific membrane antigen (PSMA), which is expressed by almost all solid tumors. This strategy takes advantage of both the avidity of the functionalized nanoparticle for binding to PSMA and the ability of the nanoparticle to be retained for longer periods of time in the tumor due to enhanced leakage via EPR into the tumor interstitium and poor clearance due to underdeveloped or non-existent lymphatics within the tumor.
    Type: Application
    Filed: July 13, 2016
    Publication date: May 18, 2017
    Inventors: Sachin S. Chandran, Sangeeta Ray, Martin G. Pomper, Samuel R. Denmeade, Ronnie C. Mease
  • Patent number: 9422234
    Abstract: The invention provides a nanoparticle composition that is decorated with a urea-based small-molecule peptidomimetic inhibitor of prostate specific membrane antigen (PSMA), which is expressed by almost all solid tumors. This strategy takes advantage of both the avidity of the functionalized nanoparticle for binding to PSMA and the ability of the nanoparticle to be retained for longer periods of time in the tumor due to enhanced leakage via EPR into the tumor interstitium and poor clearance due to underdeveloped or non-existent lymphatics within the tumor.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: August 23, 2016
    Assignee: The Johns Hopkins University
    Inventors: Sachin S. Chandran, Sangeeta Ray, Martin G. Pomper, Samuel R. Denmeade, Ronnie C. Mease
  • Publication number: 20110200677
    Abstract: The invention provides a nanoparticle composition that is decorated with a urea-based small-molecule peptidomimetic inhibitor of prostate specific membrane antigen (PSMA), which is expressed by almost all solid tumors. This strategy takes advantage of both the avidity of the functionalized nanoparticle for binding to PSMA and the ability of the nanoparticle to be retained for longer periods of time in the tumor due to enhanced leakage via EPR into the tumor interstitium and poor clearance due to underdeveloped or non-existent lymphatics within the tumor.
    Type: Application
    Filed: November 26, 2008
    Publication date: August 18, 2011
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Sachin S. Chandran, Sangeeta Ray, Martin G. Pomper, Samuel R. Denmeade, Ronnie C. Mease