Patents by Inventor Sagar Roy

Sagar Roy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220323914
    Abstract: A nanocarbon immobilized membrane (NCIM) is disclosed. The nanocarbon immobilized membrane is sized to purify different organic-water mixtures. The nanocarbon immobilized membrane can be used to purify solvents, fuels, and other organic compounds. Data using heptane-water, octane-water, fuel-water, and paint thinner-water show 99.9% separation efficiency. High organic flux is also seen at relatively low pressure. This approach has numerous applications, including fuel purification, oil spills clean-up, separation of commercial emulsions, and solvent purification.
    Type: Application
    Filed: March 25, 2022
    Publication date: October 13, 2022
    Applicant: New Jersey Institute of Technology
    Inventors: Somenath Mitra, Sagar Roy, Sumona Paul
  • Publication number: 20220176321
    Abstract: A membrane distillation (MD) system consisting of a membrane module and carbon nanotube immobilized membrane for organic solvent separation is disclosed. The MD module includes a feed inlet and outlet, a sweep gas inlet, and a sweep gas outlet. Thermostats are positioned at the feed inlet and outlet to measure the change in temperature. Preferential sorption of the organic on carbon nanotube immobilized membrane contributes to enhanced solvent removal of the MD system. A pervaporation (PV) system consisting of a membrane module and polyvinyl alcohol (PVA) mixed matrix membranes with graphene oxide (GO)—carbon nanotubes (CNTs) for enhanced purification of the alcohol solution after membrane distillation to remove trace amount of water is disclosed.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 9, 2022
    Applicant: New Jersey Institute of Technology
    Inventors: Somenath Mitra, Sagar Roy, Oindrila Gupta
  • Publication number: 20210339197
    Abstract: A membrane distillation (MD) system includes a sweep gas MD (SGMD) module and a knockout chamber. The MD module includes a feed inlet, a feed outlet, a condensing media inlet, and a condensing media outlet. The condensing media is sweep gas. The knockout chamber is positioned after the feed outlet. The knockout chamber includes a liquid inlet, a liquid outlet, and a vapor outlet. Direct gas phase stripping within the SGMD module leads to additional water evaporation at the knockout chamber and contributes to enhanced water or VOCs removal of the MD system.
    Type: Application
    Filed: April 29, 2020
    Publication date: November 4, 2021
    Inventors: SOMENATH MITRA, CHENG LI, SAGAR ROY, KABIR MITRA
  • Publication number: 20210331121
    Abstract: A membrane distillation (MD) system includes a membrane module and reduced graphene oxide-carbon nanotube immobilized membrane for organic solvent separation. The MD module could include a feed inlet and outlet, a sweep gas inlet, and a sweep gas outlet. Thermostats are positioned at the feed inlet and outlet to measure the change in temperature. Preferential sorption of the organic, specifically tetrahydrofuran (THF), on a hybrid reduced graphene oxide-carbon nanotube immobilized membrane contributes to enhanced solvent removal of the MD system.
    Type: Application
    Filed: April 8, 2021
    Publication date: October 28, 2021
    Applicant: New Jersey Institute of Technology
    Inventors: Somenath Mitra, Sagar Roy, Oindrila Gupta
  • Patent number: 10828606
    Abstract: Radiative heating and radiative feed modification systems and methods using microwave, radio frequency, magnetic field and ultrasound in membrane separation processes including membrane distillation (MD), reverse osmosis, forward osmosis and pervaporation are disclosed. Membrane distillation systems include at least one MD module, the MD module having at least one membrane, a feed inlet operable to receive a feed media and a feed outlet, and a radiative energy source operable to apply radiation to a feed media entering the feed inlet.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: November 10, 2020
    Assignee: New Jersey Institute of Technology
    Inventors: Somenath Mitra, Sagar Roy
  • Patent number: 10569223
    Abstract: Membrane distillation (MD) systems include at least two MD modules arranged in series, each of at least two MD modules including a condensing media inlet operable to receive a condensing media and a condensing media outlet, a feed inlet operable to receive a feed media and a feed outlet, and a first heating element positioned and operable to heat a feed prior to or upon introduction of the feed to a first of the at least two MD modules, wherein a stream exiting the feed outlet of the first of the at least two MD modules is introduced to the second of the at least two MD modules. Other MD systems include at least two MD modules arranged in parallel.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: February 25, 2020
    Inventors: Somenath Mitra, Sagar Roy
  • Publication number: 20190118143
    Abstract: Radiative heating and radiative feed modification systems and methods using microwave, radio frequency, magnetic field and ultrasound in membrane separation processes including membrane distillation (MD), reverse osmosis, forward osmosis and pervaporation are disclosed. Membrane distillation systems include at least one MD module, the MD module having at least one membrane, a feed inlet operable to receive a feed media and a feed outlet, and a radiative energy source operable to apply radiation to a feed media entering the feed inlet.
    Type: Application
    Filed: July 10, 2018
    Publication date: April 25, 2019
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventors: Somenath Mitra, Sagar Roy
  • Patent number: 9919274
    Abstract: Carbon nanotube (CNT) immobilized membranes for harvesting pure water from air include CNTs incorporated into a layer of super-absorbing polymer. The super-absorbing polymer may be cast over a porous substrate. The super-absorbing polymer binds strongly to water and generates water clusters while the CNTs are operable to interrupt the specific water-polymer and water-water interactions to generate more free water which permeates more easily through the membrane. Methods of forming the CNT immobilized membranes are provided. The CNT immobilized membranes disclosed herein exhibit improved water vapor extraction efficiency, water vapor removal and mass transfer coefficient.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: March 20, 2018
    Assignee: New Jersey Institute of Technology
    Inventors: Somenath Mitra, Sagar Roy
  • Publication number: 20170368506
    Abstract: Membrane distillation (MD) systems include at least two MD modules arranged in series, each of at least two MD modules including a condensing media inlet operable to receive a condensing media and a condensing media outlet, a feed inlet operable to receive a feed media and a feed outlet, and a first heating element positioned and operable to heat a feed prior to or upon introduction of the feed to a first of the at least two MD modules, wherein a stream exiting the feed outlet of the first of the at least two MD modules is introduced to the second of the at least two MD modules. Other MD systems include at least two MD modules arranged in parallel.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 28, 2017
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventors: Somenath Mitra, Sagar Roy
  • Publication number: 20170333848
    Abstract: Membranes including functionalized carbon nanotubes, nanodiamonds and/or graphene oxide immobilized in or on the membranes are disclosed. The membranes including the immobilized nanocarbons increase interactions with water vapor to improve desalination efficiency in membrane distillation. The membranes may be deployed in all modes of membrane distillation such as air gap membrane distillation, direct contact membrane distillation, vacuum membrane distillation and other separations.
    Type: Application
    Filed: August 1, 2017
    Publication date: November 23, 2017
    Inventors: Somenath Mitra, Sagar Roy, Madhuleena Bhadra
  • Publication number: 20170072369
    Abstract: Carbon nanotube (CNT) immobilized membranes for harvesting pure water from air include CNTs incorporated into a layer of super-absorbing polymer. The super-absorbing polymer may be cast over a porous substrate. The super-absorbing polymer binds strongly to water and generates water clusters while the CNTs are operable to interrupt the specific water-polymer and water-water interactions to generate more free water which permeates more easily through the membrane. Methods of forming the CNT immobilized membranes are provided. The CNT immobilized membranes disclosed herein exhibit improved water vapor extraction efficiency, water vapor removal and mass transfer coefficient.
    Type: Application
    Filed: September 14, 2016
    Publication date: March 16, 2017
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventors: Somenath Mitra, Sagar Roy
  • Publication number: 20150096935
    Abstract: Membranes including functionalized carbon nanotubes, nanodiamonds and/or graphene oxide immobilized in or on the membranes are disclosed. The membranes including the immobilized nanocarbons increase interactions with water vapor to improve desalination efficiency in membrane distillation. The membranes may be deployed in all modes of membrane distillation such as air gap membrane distillation, direct contact membrane distillation, vacuum membrane distillation and other separations.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 9, 2015
    Inventors: Somenath Mitra, Sagar Roy, Madhulina Bhadra