Patents by Inventor Sai Mantripragada

Sai Mantripragada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10526708
    Abstract: A method and apparatus are provided for plasma-based processing of a substrate based on a plasma source having a first, second and third electrodes disposed above a pedestal. The second electrode is disposed between the first and third electrodes. A first gap is formed between the first electrode and the pedestal and between the third electrode and the pedestal. A second gap is formed between the first and second electrodes, and a third gap is formed between the second and third electrodes. A first radio frequency (RF) power supply is connected to the first and third electrodes and is configured to predominantly deliver power to plasmas located in the first gap. A second RF power supply is connected to the second electrode and is configured to predominantly deliver power to plasmas located in the second and third gaps.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: January 7, 2020
    Assignee: AIXTRON SE
    Inventors: Stephen E. Savas, Carl Galewski, Hood Chatham, Sai Mantripragada, Allan Wiesnoski, Sooyun Joh
  • Patent number: 10049859
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: August 14, 2018
    Assignee: Aixtron SE
    Inventors: Stephen Edward Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh
  • Publication number: 20180202046
    Abstract: A method and apparatus are provided for plasma-based processing of a substrate based on a plasma source having a first, second and third electrodes disposed above a pedestal. The second electrode is disposed between the first and third electrodes. A first gap is formed between the first electrode and the pedestal and between the third electrode and the pedestal. A second gap is formed between the first and second electrodes, and a third gap is formed between the second and third electrodes. A first radio frequency (RF) power supply is connected to the first and third electrodes and is configured to predominantly deliver power to plasmas located in the first gap. A second RF power supply is connected to the second electrode and is configured to predominantly deliver power to plasmas located in the second and third gaps.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Inventors: Stephen E. Savas, Carl Galewski, Hood Chatham, Sai Mantripragada, Allan Wiesnoski, Sooyun Joh
  • Publication number: 20160289837
    Abstract: A method and apparatus are provided for plasma-based processing of a substrate based on a plasma source having at least two adjacent electrodes positioned with the long dimensions parallel to define a first minimum gap between the two electrodes of from 5 millimeters to 40 millimeters. A second minimum gap is defined between the two electrodes and the substrate. AC power is provided to the two electrodes through separate electrical circuits from a common supply with a phase difference therebetween. A first gas and a second gas are injected into the plasma-containing volume between the two electrodes at different positions relative to the substrate. A lower electrode with a lower electrode width that is less than the combined width of the two electrodes is powered from a separately controllable AC power supply at an AC frequency different from that supplied to the two electrodes.
    Type: Application
    Filed: June 1, 2016
    Publication date: October 6, 2016
    Inventors: Stephen E. Savas, Carl Galewski, Hood Chatham, Sai Mantripragada, Allan Wiesnoski, Sooyun Joh
  • Patent number: 9443702
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: September 13, 2016
    Assignee: Aixtron SE
    Inventors: Stephen E. Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh
  • Patent number: 9359674
    Abstract: The disclosed invention includes apparatus and methods that may be used for plasma-based deposition of thin layers of material on separate or continuous web substrates at very low temperatures with very low defect density. It achieves superior control of gas phase chemistry by controlling the sequence of introduction of gaseous components. It also has substantially independent control over the rate of chemical processes in the gas and of the amount of power and energy of ion bombardment. Such control enables high quality single and multi-layer films to be deposited cost effectively and uniformly over larger areas under very low temperature conditions.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: June 7, 2016
    Assignee: Aixtron, Inc.
    Inventors: Stephen Edward Savas, Sai Mantripragada, Sooyun Joh, Allan B. Wiesnoski, Carl Galewski
  • Publication number: 20150270109
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Application
    Filed: June 9, 2015
    Publication date: September 24, 2015
    Inventors: Stephen E. Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh
  • Patent number: 9096933
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: August 4, 2015
    Assignee: Aixtron, Inc.
    Inventors: Stephen E. Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh
  • Patent number: 9096932
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: August 4, 2015
    Assignee: Aixtron, Inc.
    Inventors: Stephen E. Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh
  • Publication number: 20140314965
    Abstract: The disclosed invention includes apparatus and methods that may be used for plasma-based deposition of thin layers of material on separate or continuous web substrates at very low temperatures with very low defect density. It achieves superior control of gas phase chemistry by controlling the sequence of introduction of gaseous components. It also has substantially independent control over the rate of chemical processes in the gas and of the amount of power and energy of ion bombardment. Such control enables high quality single and multi-layer films to be deposited cost effectively and uniformly over larger areas under very low temperature conditions.
    Type: Application
    Filed: July 1, 2014
    Publication date: October 23, 2014
    Inventors: Stephen Edward Savas, Sai Mantripragada, Sooyun Joh, Allan B. Wiesnoski, Carl Galewski
  • Publication number: 20140220262
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Application
    Filed: April 15, 2014
    Publication date: August 7, 2014
    Applicant: PLASMASI, INC.
    Inventors: Stephen E. Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh
  • Publication number: 20140212601
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Application
    Filed: April 14, 2014
    Publication date: July 31, 2014
    Applicant: PlasmaSi, Inc.
    Inventors: Stephen E. Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh
  • Patent number: 8765232
    Abstract: The disclosed invention includes apparatus and methods that may be used for plasma-based deposition of thin layers of material on separate or continuous web substrates at very low temperatures with very low defect density. It achieves superior control of gas phase chemistry by controlling the sequence of introduction of gaseous components. It also has substantially independent control over the rate of chemical processes in the gas and of the amount of power and energy of ion bombardment. Such control enables high quality single and multi-layer films to be deposited cost effectively and uniformly over larger areas under very low temperature conditions.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: July 1, 2014
    Assignee: PlasmaSi, Inc.
    Inventors: Stephen Edward Savas, Sai Mantripragada, Sooyun Joh, Allan B. Wiesnoski, Carl Galewski
  • Patent number: 8697197
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 15, 2014
    Assignee: Plasmasi, Inc.
    Inventors: Stephen Edward Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh
  • Publication number: 20130337657
    Abstract: A method and apparatus are provided for plasma-based processing of a substrate based on a plasma source having at least two adjacent electrodes positioned with the long dimensions parallel to define a first gap minimum between the two electrodes of from 5 millimeters to 40 millimeters. A second gap minimum is defined between the two electrodes and the substrate. AC power is provided to the two electrodes through separate electrical circuits from a common supply with the phase difference therebetween. A first gas and a second are injected into the plasma-containing volume between the two electrodes are different positions relative to the substrate. A lower electrode with a lower electrode width that is less than the combined width of the two electrodes is powered from a separately controllable ac power supply at an ac frequency different from that supplied to the two electrodes.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 19, 2013
    Inventors: Stephen E. Savas, Carl Galewski, Hood Chatham, Sai Mantripragada, Allan Wiesnoski, Sooyun Joh
  • Publication number: 20120225218
    Abstract: The disclosed invention includes apparatus and methods that may be used for plasma-based deposition of thin layers of material on separate or continuous web substrates at very low temperatures with very low defect density. It achieves superior control of gas phase chemistry by controlling the sequence of introduction of gaseous components. It also has substantially independent control over the rate of chemical processes in the gas and of the amount of power and energy of ion bombardment. Such control enables high quality single and multi-layer films to be deposited cost effectively and uniformly over larger areas under very low temperature conditions.
    Type: Application
    Filed: January 10, 2012
    Publication date: September 6, 2012
    Applicant: PlasmaSi, Inc.
    Inventors: Stephen Edward Savas, Sai Mantripragada, Sooyun Joh, Allan B. Wiesnoski, Carl Galewski
  • Patent number: 7976263
    Abstract: An integrated high speed robotic mechanism is disclosed for improving transport equipment, integrating an object movement with other functionalities such as alignment or identification. The disclosed integrated robot assembly typically comprises an end effector for moving the object in and out of a chamber, a rotation chuck incorporated on the robot body to provide centering and theta alignment capability, and an optional identification subsystem for identifying the object during transport. The present invention also discloses a transfer robot system, employing a plurality of integrated robot assemblies; a transfer system where a transfer robot system can service a plurality of connected chambers such as FOUP or FOSB; a front end module (FEM); or a sorter system. Through the use of these incorporated capabilities into the moving robot, single object transfer operations can exceed 500 parts per hour.
    Type: Grant
    Filed: September 22, 2007
    Date of Patent: July 12, 2011
    Inventors: David Barker, Robert T. LoBianco, Sai Mantripragada, Farzad Tabrizi
  • Publication number: 20110005681
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 13, 2011
    Inventors: Stephen Edward Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh
  • Publication number: 20110005682
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 13, 2011
    Inventors: Stephen Edward Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh
  • Publication number: 20110006040
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 13, 2011
    Inventors: Stephen Edward Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh