Patents by Inventor Sai Venkata Karthik Saripella

Sai Venkata Karthik Saripella has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11674451
    Abstract: A turbine engine including a fan, a nacelle circumscribing at least the fan, a compressor section downstream of the fan, and a conduit defined, at least in part, by the nacelle. The conduit includes a first opening at the compressor section, a second opening downstream of the fan and upstream of the compressor section, and a third opening upstream of the fan. Pressure sensors coupled to the nacelle are communicatively coupled to at least one actuator. The at least one actuator can adjust airflow between the first opening and the second opening, or between the first opening and the third opening. The pressure sensors can provide outputs for generating commands that control the at least one actuator.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: June 13, 2023
    Assignee: General Electric Company
    Inventors: Sai Venkata Karthik Saripella, Vishnu Vardhan Venkata Tatiparthi, Keith Blodgett
  • Publication number: 20220412271
    Abstract: A turbine engine including a fan, a nacelle circumscribing at least the fan, a compressor section downstream of the fan, and a conduit defined, at least in part, by the nacelle. The conduit includes a first opening at the compressor section, a second opening downstream of the fan and upstream of the compressor section, and a third opening upstream of the fan. Pressure sensors coupled to the nacelle are communicatively coupled to at least one actuator. The at least one actuator can adjust airflow between the first opening and the second opening, or between the first opening and the third opening. The pressure sensors can provide outputs for generating commands that control the at least one actuator.
    Type: Application
    Filed: April 26, 2022
    Publication date: December 29, 2022
    Inventors: Sai Venkata Karthik Saripella, Vishnu Vardhan Venkata Tatiparthi, Keith Blodgett
  • Patent number: 11371433
    Abstract: Composite components and methods for forming composite components are provided. For example, a composite component of a gas turbine engine comprises a composite material, a plurality of piezoelectric fibers, and an anti-icing mechanism. The anti-icing mechanism is in operative communication with the piezoelectric fibers such that the anti-icing mechanism is activated by one or more electrical signals from the piezoelectric fibers. In exemplary embodiments, the composite component is a composite airfoil and the anti-icing mechanism is one or more heating elements. Methods for forming composite components may comprise forming piezoelectric plies comprising piezoelectric fibers embedded in a matrix material; forming reinforcing plies comprising reinforcing fibers embedded in the matrix material; laying up the piezoelectric and reinforcing plies to form a ply layup; and processing the ply layup to form the composite component.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: June 28, 2022
    Assignee: General Electric Company
    Inventors: Sai Venkata Karthik Saripella, Nagamohan Govinahalli Prabhakar, Nicholas Joseph Kray
  • Publication number: 20210062717
    Abstract: Composite components and methods for forming composite components are provided. For example, a composite component of a gas turbine engine comprises a composite material, a plurality of piezoelectric fibers, and an anti-icing mechanism. The anti-icing mechanism is in operative communication with the piezoelectric fibers such that the anti-icing mechanism is activated by one or more electrical signals from the piezoelectric fibers. In exemplary embodiments, the composite component is a composite airfoil and the anti-icing mechanism is one or more heating elements. Methods for forming composite components may comprise forming piezoelectric plies comprising piezoelectric fibers embedded in a matrix material; forming reinforcing plies comprising reinforcing fibers embedded in the matrix material; laying up the piezoelectric and reinforcing plies to form a ply layup; and processing the ply layup to form the composite component.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 4, 2021
    Inventors: Sai Venkata Karthik Saripella, Nagamohan Govinahalli Prabhakar, Nicholas Joseph Kray
  • Patent number: 10838053
    Abstract: A system for measuring a gap between a moving and stationary component of a turbine engine. The system comprises a turbine engine having a core with compressor, combustor, and turbine sections in axial flow arrangement, with at least one rotating blade mounted to a shaft in the compressor and turbine sections and a stationary casing surrounding the at least one blade. At least one surface acoustic wave sensor mounted on one of the at least one blades or casing and generating an electromagnetic signal. An antenna in communication with the surface acoustic wave sensor for receiving the electromagnetic signal; and a computer system configured to receive the electromagnetic signal from the antenna and to convert the electromagnetic signal to a clearance value.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: November 17, 2020
    Assignee: General Electric Company
    Inventor: Sai Venkata Karthik Saripella
  • Publication number: 20200011982
    Abstract: A system for measuring a gap between a moving and stationary component of a turbine engine. The system comprises a turbine engine having a core with compressor, combustor, and turbine sections in axial flow arrangement, with at least one rotating blade mounted to a shaft in the compressor and turbine sections and a stationary casing surrounding the at least one blade. At least one surface acoustic wave sensor mounted on one of the at least one blades or casing and generating an electromagnetic signal. An antenna in communication with the surface acoustic wave sensor for receiving the electromagnetic signal; and a computer system configured to receive the electromagnetic signal from the antenna and to convert the electromagnetic signal to a clearance value.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 9, 2020
    Inventor: Sai Venkata Karthik Saripella