Patents by Inventor Salah M. Bedair

Salah M. Bedair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220336699
    Abstract: Various examples are provided related to InGaN-relaxed templates. In one example, a device structure includes a GaN layer; and a semibulk template comprising a plurality of stacked periods on the GaN layer. Each period can include a layer of InGaN and a GaN interlayer disposed on the layer of InGaN, where a thickness of the GaN interlayer of a top period of the stacked periods is greater than a thickness of the GaN interlayer of a bottom period disposed on the GaN layer. In another example, a method includes forming a GaN layer and forming a semibulk template including a plurality of stacked periods on the GaN layer. Each period can include a layer of InGaN and a GaN interlayer disposed on the layer of InGaN, where a thickness of the GaN interlayer of the top period is greater than the GaN interlayer of the bottom period.
    Type: Application
    Filed: April 20, 2022
    Publication date: October 20, 2022
    Inventor: Salah M. Bedair
  • Publication number: 20130200391
    Abstract: A gallium nitride-based structure includes a substrate, a first layer of gallium nitride disposed on a growth surface of the substrate, and a second gallium nitride layer disposed on the first gallium nitride layer. The first layer includes a region in which a plurality of voids is dispersed. The second layer has a lower defect density than the gallium nitride of the interfacial region. The gallium nitride-based structure is fabricated by depositing GaN on the growth surface to form the first layer, forming a plurality of gallium nitride nanowires by removing gallium nitride from the first layer, and growing additional GaN from facets of the nanowires. Gallium nitride crystals growing from neighboring facets coalesce to form a continuous second layer, below which the voids are dispersed in the first layer. The voids serve as sinks or traps for crystallographic defects, and also as expansion joints that ameliorate thermal mismatch between the Ga.N and the underlying substrate.
    Type: Application
    Filed: September 28, 2011
    Publication date: August 8, 2013
    Applicant: North Carolina State University
    Inventors: Salah M. Bedair, Nadia A. El-Masry, Pavel Frajtag
  • Patent number: 7265375
    Abstract: Methods of forming a nano-scale electronic and optoelectronic devices include forming a substrate having a semiconductor layer therein and a substrate insulating layer on the semiconductor layer. An etching template having a first array of non-photolithographically defined nano-channels extending therethrough, is formed on the substrate insulating layer. This etching template may comprise an anodized metal oxide, such as an anodized aluminum oxide (AAO) thin film. The substrate insulating layer is then selectively etched to define a second array of nano-channels therein. This selective etching step preferably uses the etching template as an etching mask to transfer the first array of nano-channels to the underlying substrate insulating layer, which may be thinner than the etching template. An array of semiconductor nano-pillars is then formed in the second array of nano-channels. The semiconductor nano-pillars in the array may have an average diameter in a range between about 8 nm and about 50 nm.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: September 4, 2007
    Assignee: North Carolina State University
    Inventors: Zhibo Zhang, Veena Misra, Salah M. A. Bedair, Mehmet Ozturk
  • Patent number: 6955858
    Abstract: Transition metal doped II–V nitride material films exhibit ferromagnetic properties at or above room temperature. A III–V nitride material film may be doped with a transition metal film in-situ during metal-organic chemical vapor deposition and/or by solid-state diffusion processes. Doping of the III–V nitride material films may proceed in the absence of hydrogen and/or in the presence of nitrogen. In some embodiments, transition metal-doped III–V nitride material films comprise carbon concentrations of at least 1017 atoms per cubic centimeter.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: October 18, 2005
    Assignee: North Carolina State University
    Inventors: Nadia A. ElMasry, Salah M. Bedair, Meredith L. Reed, Hans Stadelmaier
  • Patent number: 6914256
    Abstract: Methods of forming a nano-scale electronic and optoelectronic devices include forming a substrate having a semiconductor layer therein and a substrate insulating layer on the semiconductor layer. An etching template having a first array of non-photolithographically defined nano-channels extending therethrough, is formed on the substrate insulating layer. This etching template may comprise an anodized metal oxide, such as an anodized aluminum oxide (AAO) thin film. The substrate insulating layer is then selectively etched to define a second array of nano-channels therein. This selective etching step preferably uses the etching template as an etching mask to transfer the first array of nano-channels to the underlying substrate insulating layer, which may be thinner than the etching template. An array of semiconductor nano-pillars is then formed in the second array of nano-channels. The semiconductor nano-pillars in the array may have an average diameter in a range between about 8 nm and about 50 nm.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: July 5, 2005
    Assignee: North Carolina State University
    Inventors: Zhibo Zhang, Veena Misra, Salah M. A. Bedair, Mehmet Ozturk
  • Publication number: 20040144985
    Abstract: Methods of forming a nano-scale electronic and optoelectronic devices include forming a substrate having a semiconductor layer therein and a substrate insulating layer on the semiconductor layer. An etching template having a first array of non-photolithographically defined nano-channels extending therethrough, is formed on the substrate insulating layer. This etching template may comprise an anodized metal oxide, such as an anodized aluminum oxide (AAO) thin film. The substrate insulating layer is then selectively etched to define a second array of nano-channels therein. This selective etching step preferably uses the etching template as an etching mask to transfer the first array of nano-channels to the underlying substrate insulating layer, which may be thinner than the etching template. An array of semiconductor nano-pillars is then formed in the second array of nano-channels. The semiconductor nano-pillars in the array may have an average diameter in a range between about 8 nm and about 50 nm.
    Type: Application
    Filed: January 20, 2004
    Publication date: July 29, 2004
    Inventors: Zhibo Zhang, Veena Misra, Salah M. A. Bedair, Mehmet Ozturk
  • Patent number: 6709929
    Abstract: Methods of forming a nano-scale electronic and optoelectronic devices include forming a substrate having a semiconductor layer therein and a substrate insulating layer on the semiconductor layer. An etching template having a first array of non-photolithographically defined nano-channels extending therethrough, is formed on the substrate insulating layer. This etching template may comprise an anodized metal oxide, such as an anodized aluminum oxide (AAO) thin film. The substrate insulating layer is then selectively etched to define a second array of nano-channels therein. This selective etching step preferably uses the etching template as an etching mask to transfer the first array of nano-channels to the underlying substrate insulating layer, which may be thinner than the etching template. An array of semiconductor nano-pillars is then formed in the second array of nano-channels. The semiconductor nano-pillars in the array may have an average diameter in a range between about 8 nm and about 50 nm.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: March 23, 2004
    Assignee: North Carolina State University
    Inventors: Zhibo Zhang, Veena Misra, Salah M. A. Bedair, Mehmet Ozturk
  • Publication number: 20030136986
    Abstract: Transition metal doped III-V nitride material films exhibit ferromagnetic properties at or above room temperature. A III-V nitride material film may be doped with a transition metal film in-situ during metal-organic chemical vapor deposition and/or by solid-state diffusion processes. Doping of the III-V nitride material films may proceed in the absence of hydrogen and/or in the presence of nitrogen. In some embodiments, transition metal-doped III-V nitride material films comprise carbon concentrations of at least 1017 atoms per cubic centimeter.
    Type: Application
    Filed: December 6, 2002
    Publication date: July 24, 2003
    Inventors: Nadia A. ElMasry, Salah M. Bedair, Meredith L. Reed, Hans Stadelmaier
  • Publication number: 20030010971
    Abstract: Methods of forming a nano-scale electronic and optoelectronic devices include forming a substrate having a semiconductor layer therein and a substrate insulating layer on the semiconductor layer. An etching template having a first array of non-photolithographically defined nano-channels extending therethrough, is formed on the substrate insulating layer. This etching template may comprise an anodized metal oxide, such as an anodized aluminum oxide (AAO) thin film. The substrate insulating layer is then selectively etched to define a second array of nano-channels therein. This selective etching step preferably uses the etching template as an etching mask to transfer the first array of nano-channels to the underlying substrate insulating layer, which may be thinner than the etching template. An array of semiconductor nano-pillars is then formed in the second array of nano-channels. The semiconductor nano-pillars in the array may have an average diameter in a range between about 8 nm and about 50 nm.
    Type: Application
    Filed: June 24, 2002
    Publication date: January 16, 2003
    Inventors: Zhibo Zhang, Veena Misra, Salah M. A. Bedair, Mehmet Ozturk
  • Patent number: 4956000
    Abstract: A method for fabricating a lens in which the lens composition is controlled by dynamic shaping and shadowing. A lens material is vaporized and directed to a substrate through an orifice which is rotating relative to the substrate about the lens axis and which has a non-uniform radial distribution. The lens material is condensed on the substrate to form a lens having a radially non-uniform but axially symmetrical distribution. Thereafter, the original orifice may be replaced by a complimentary orifice and another lens material vaporized and directed to the substrate through the replacement orifice which is also rotating relative to the substrate about the lens axis and which also has a non-uniform radial distribution. This second lens material condenses on the first condensed lens material to form a compound lens.
    Type: Grant
    Filed: June 28, 1989
    Date of Patent: September 11, 1990
    Inventors: Robert R. Reeber, Wei-Kan Chu, Salah M. Bedair
  • Patent number: H667
    Abstract: A multijunction solar cell is disclosed which uses a patterned intercell ohmic connection as the tunnel junction to connect a top solar cell in electrical and optical series with a bottom solar cell. By confining this patterned tunnel junction to shadowed areas directly beneath the top surface metallization grid, the tunnel junction is set free from the requirement that it be transparent and have band gaps greater than or equal to those of the top solar cell.
    Type: Grant
    Filed: May 14, 1987
    Date of Patent: September 5, 1989
    Assignee: The United States of America as represented by the Secretaryof the Air Force
    Inventors: Salah M. Bedair, Robert J. Markunas, Michael L. Timmons, James A. Hutchby, John R. Hauser