Patents by Inventor Salima ALEM

Salima ALEM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11545633
    Abstract: The development of air-stable unipolar n-type semiconductors with good solubility in organic solvents at room temperature remains a critical issue in the field of organic electronics. Moreover, most of the existing semiconducting materials exhibit LUMO energy levels higher than ?4.0 eV, making electron transport sensitive to both moisture and oxygen. Bis(2-oxoindolin-3-ylidene)benzodifurandione dicyanide or derivatives thereof are disclosed herein. More specifically, bis(2-oxoindolin-3-ylidene)benzodifurandione dicyanide or derivatives thereof for use in organic electronics are disclosed. A process for the preparation of bis(2-oxoindolin-3-ylidene)benzodifurandione dicyanide and derivatives is also disclosed. The bis(2-oxoindolin-3-ylidene)benzodifurandione dicyanide or derivatives thereof are characterized by high electron mobilities and are suitable for use as n-type semiconductors in organic electronics.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: January 3, 2023
    Assignees: NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Jianping Lu, Afshin Dadvand, Mark Bortolus, Salima Alem, Ye Tao, Yuning Li, Jesse Quinn
  • Publication number: 20210013424
    Abstract: The development of air-stable unipolar n-type semiconductors with good solubility in organic solvents at room temperature remains a critical issue in the field of organic electronics. Moreover, most of the existing semiconducting materials exhibit LUMO energy levels higher than ?4.0 eV, making electron transport sensitive to both moisture and oxygen. Bis(2-oxoindolin-3-ylidene)benzodifurandione dicyanide or derivatives thereof are disclosed herein. More specifically, bis(2-oxoindolin-3-ylidene)benzodifurandione dicyanide or derivatives thereof for use in organic electronics are disclosed. A process for the preparation of bis(2-oxoindolin-3-ylidene)benzodifurandione dicyanide and derivatives is also disclosed. The bis(2-oxoindolin-3-ylidene)benzodifurandione dicyanide or derivatives thereof are characterized by high electron mobilities and are suitable for use as n-type semiconductors in organic electronics.
    Type: Application
    Filed: March 13, 2019
    Publication date: January 14, 2021
    Applicant: NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Jianping LU, Afshin DADVAND, Mark BORTOLUS, Salima ALEM, Ye TAO, Yuning LI, Jesse QUINN
  • Patent number: 10644044
    Abstract: Methods are provided for fabricating photodetector arrays using passive matrix addressing technology. The photodetector arrays use a pair of switching diode and photo diode to overcome crosstalk issues within the passive matrix. The switching diode and the photo diode of each pixel may be connected using a cathode-to-cathode connection, or an anode-to-anode connection. The photodetector arrays are fabricated by assembling on a first substrate, an array of photodetector pixels comprising a switching diode and a photo diode, providing conductive lines for each row of the array and conductive lines for each column of the array, and attaching a second substrate to the first substrate. The photodetector array may also be fabricated by assembling on a first substrate an array of switching diodes, and assembling on a second substrate an array of photo diodes, and bonding the first and second substrates together.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: May 5, 2020
    Assignee: National Research Council of Canada
    Inventors: Zhiyi Zhang, Ye Tao, Heping Ding, Salima Alem, Shoude Chang
  • Publication number: 20190371834
    Abstract: Methods are provided for fabricating photodetector arrays using passive matrix addressing technology. The photodetector arrays use a pair of switching diode and photo diode to overcome crosstalk issues within the passive matrix. The switching diode and the photo diode of each pixel may be connected using a cathode-to-cathode connection, or an anode-to-anode connection. The photodetector arrays are fabricated by assembling on a first substrate, an array of photodetector pixels comprising a switching diode and a photo diode, providing conductive lines for each row of the array and conductive lines for each column of the array, and attaching a second substrate to the first substrate. The photodetector array may also be fabricated by assembling on a first substrate an array of switching diodes, and assembling on a second substrate an array of photo diodes, and bonding the first and second substrates together.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 5, 2019
    Inventors: Zhiyi ZHANG, Ye TAO, Heping DING, Salima ALEM, Shoude CHANG