Patents by Inventor Salvador Mendoza

Salvador Mendoza has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11871330
    Abstract: Systems, devices, and techniques described herein relate to migrating a communication session from a path including a stressed user plane function (UPF) to a path including a replacement UPF. A communication session may traverse a first path including the first UPF. After establishing the communication session, the first UPF may be determined to be stressed. In response, the communication session can be proactively migrated to a second path including a second UPF. According to various implementations, the existing communication session can be maintained during the migration, thereby substantially eliminating interruptions caused by the stressed first UPF.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: January 9, 2024
    Assignee: T-Mobile USA, Inc.
    Inventors: Suliman Albasheir, Boris Antsev, Christopher H. Joul, Rahul Pal, Suresh Thanneeru, Karunakalage Viraj Rakitha Silva, Salvador Mendoza, Rushabhkumar Patel
  • Publication number: 20230337004
    Abstract: Systems and methods are provided for transmitting subscriber information via HTTPS. Upon a UE initiating an HTTPS transaction to a server, the gateway reads an SNI header of the HTTPS transaction or a destination IP address of the server. If the SNI header or the destination IP address in the HTTPS transaction matches a pre-configured SNI header or destination IP address that requires subscriber information, the gateway copies a portion of an HTTPS message corresponding to the HTTPS transaction. The gateway initiates a secured connection to the server via HTTPS and forwards the subscriber information to the server, including the portion of the HTTPS message used to correlate the subscriber information to the original HTTPS transaction. Upon successfully correlating the subscriber information to the original HTTPS transaction, an acknowledgement is received that the HTPPS transaction is successful.
    Type: Application
    Filed: November 4, 2022
    Publication date: October 19, 2023
    Inventors: Salvador Mendoza, Boris Antsev
  • Patent number: 11777855
    Abstract: Policy based dual connectivity traffic steering is described herein. A master Long-Term Evolution (LTE) base station may operate in conjunction with a secondary New Radio (NR) base station to provide dual connectivity to user equipment (UE) operating in an environment. The LTE base station can steer traffic between the LTE base station and the NR base station based at least in part on policy information received at the LTE base station. The policy information can indicate, for a particular UE and for a particular Quality of Service (QoS) Class Identifier (QCI), whether the LTE base station can transfer a communication to the NR base station. Thus, traffic steering determinations can be based on the policy information, quality identifiers, device capability, signal strength(s), load level(s), and the like, thereby providing a flexible framework for steering wireless traffic in a dual connectivity environment.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: October 3, 2023
    Assignee: T-Mobile USA, Inc.
    Inventors: Suresh Thanneeru, Salvador Mendoza
  • Patent number: 11743855
    Abstract: A core network device of a telecommunications network can receive a first request from a consumer network function (NF) and forward the first request to a first provider NF. The device can subsequently detect a violation by the first provider NF of a response criterion. The device can receive a second request and forward the second request to a second, different provider NF in response to the violation. In some examples, the device can later detect that the first provider NF has satisfied the response criterion with respect to a third request. The device can modify load data to increase the proportion of subsequent requests for which the first provider NF is selected. The device can select provider NFs based on the load data. In some examples, a system can include a network registry device that selects NFs based on violation indications received from the core network device.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: August 29, 2023
    Assignee: T-Mobile USA, Inc.
    Inventors: Suliman Albasheir, Karunakalage Viraj Rakitha Silva, Salvador Mendoza
  • Patent number: 11695636
    Abstract: A telecommunication system can include routing devices, a bearer-management device, and a policy-management device. The bearer-management device can receive a request from a terminal to create a specialized bearer (SB) for a non-audio, non-video media type. The bearer-management device can determine that the request is associated with an authorized user, and then send a setup message comprising a Quality of Service (QoS) indicator to the policy-management device. The policy-management device can create the SB permitting data exchange between the terminal and a routing device. The SB can have QoS characteristics associated with the QoS indicator. In some examples, the terminal can receive a network address, determine an associated network port, and send a SIP INVITE message indicating the non-audio, non-video media type. The terminal can then exchange data on the network port with a peer network terminal.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: July 4, 2023
    Assignee: T-Mobile USA, Inc.
    Inventors: Paul Bongaarts, Mallika Deshpande, Grant Morgan Castle, Otto Fonseca Escudero, Andrew Gapin, Egil Gronstad, Kirti Krishnan, Salvador Mendoza
  • Publication number: 20230087004
    Abstract: Systems, devices, and techniques described herein relate to migrating a communication session from a path including a stressed user plane function (UPF) to a path including a replacement UPF. A communication session may traverse a first path including the first UPF. After establishing the communication session, the first UPF may be determined to be stressed. In response, the communication session can be proactively migrated to a second path including a second UPF. According to various implementations, the existing communication session can be maintained during the migration, thereby substantially eliminating interruptions caused by the stressed first UPF.
    Type: Application
    Filed: October 31, 2022
    Publication date: March 23, 2023
    Inventors: Suliman Albasheir, Boris Antsev, Christopher H. Joul, Rahul Pal, Suresh Thanneeru, Karunakalage Viraj Rakitha Silva, Salvador Mendoza, Rushabhkumar Patel
  • Publication number: 20230075268
    Abstract: Systems, devices, and techniques described herein relate to efficient Evolved Packet System (EPS) fallback. A method may include receiving a rejection message that indicates a rejection to set up a call through a 5th Generation (5G) network by a 5G Radio Access Network (RAN). In response to receiving the rejection message, the method may include transmitting a request to establish a dedicated bearer through a 4th Generation (4G) network. A confirmation that the second dedicated bearer has been established through the 4G network may be received within a predetermined time after transmitting the request.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 9, 2023
    Inventors: Rahul Pal, Suresh Thanneeru, Salvador Mendoza, Karunakalage Viraj Rakitha Silva
  • Patent number: 11510267
    Abstract: Systems, devices, and techniques described herein relate to efficient Evolved Packet System (EPS) fallback. A method may include receiving a rejection message that indicates a rejection to set up a call through a 5th Generation (5G) network by a 5G Radio Access Network (RAN). In response to receiving the rejection message, the method may include transmitting a request to establish a dedicated bearer through a 4th Generation (4G) network. A confirmation that the second dedicated bearer has been established through the 4G network may be received within a predetermined time after transmitting the request.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: November 22, 2022
    Assignee: T-Mobile USA, Inc.
    Inventors: Rahul Pal, Suresh Thanneeru, Salvador Mendoza, Karunakalage Viraj Rakitha Silva
  • Patent number: 11490318
    Abstract: Systems, devices, and techniques described herein relate to migrating a communication session from a path including a stressed user plane function (UPF) to a path including a replacement UPF. A communication session may traverse a first path including the first UPF. After establishing the communication session, the first UPF may be determined to be stressed. In response, the communication session can be proactively migrated to a second path including a second UPF. According to various implementations, the existing communication session can be maintained during the migration, thereby substantially eliminating interruptions caused by the stressed first UPF.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: November 1, 2022
    Assignee: T-Mobile USA, Inc.
    Inventors: Suliman Albasheir, Boris Antsev, Christopher H. Joul, Rahul Pal, Suresh Thanneeru, Karunakalage Viraj Rakitha Silva, Salvador Mendoza, Rushabhkumar Patel
  • Patent number: 11477670
    Abstract: A system, e.g., associated with a telecommunications network, includes first and second registry devices. In some examples, the first registry device receives a registration message. The second registry device receives a query specifying a type (NFType) of a network function and forwards the query to the first registry device based at least in part on the NFType. The first registry device responds, and the second registry device forwards the response. In some examples, the query specifies a service class and the second registry device forwards the query based at least in part on the service class. In some examples, the first registry device sends an indication of the registration to the second registry device, and the second registry device responds to the query based at least in part on the received indication and on at least one of an NFType or a service class of the query.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: October 18, 2022
    Assignee: T-Mobile USA, Inc.
    Inventors: Salvador Mendoza, Rahul Pal, Muhammad Waqar Afzal, Muhammad Adnan Farooq, Suresh Thanneeru, Suliman Albasheir
  • Publication number: 20220046505
    Abstract: An access network can allocate a bearer for a network service associated with a quality-of-service (QoS) value (QV) and a retention-priority value (RPV), and determine a bearer ID for the service based on the QV, the RPV, and a supplemental priority value (SPV) different from the QV and from the RPV. Upon handover of a terminal, session(s) carried by a bearer allocated by the terminal can be terminated. That bearer can be selected using IDs of the bearers and a comparison function that, given two bearer IDs, determines which respective bearer should be terminated before the other. Upon handover of a terminal to an access network supporting fewer bearers per terminal than the terminal has allocated, a network node can select a bearer based on respective QVs and RPVs of a set of allocated bearers. The network node can deallocate the selected bearer.
    Type: Application
    Filed: August 9, 2021
    Publication date: February 10, 2022
    Inventors: Kun Lu, Boris Antsev, Terri L. Brooks, Egil Gronstad, John Humbert, Alan Denis MacDonald, Salvador Mendoza, Scott Francis Migaldi, Gary Jones, Christopher H. Joul, Jun Liu, Ming Shan Kwok, Karunakalage Viraj Rakitha Silva, Neng-Tsann Ueng
  • Publication number: 20210328872
    Abstract: A telecommunication system can include routing devices, a bearer-management device, and a policy-management device. The bearer-management device can receive a request from a terminal to create a specialized bearer (SB) for a non-audio, non-video media type. The bearer-management device can determine that the request is associated with an authorized user, and then send a setup message comprising a Quality of Service (QoS) indicator to the policy-management device. The policy-management device can create the SB permitting data exchange between the terminal and a routing device. The SB can have QoS characteristics associated with the QoS indicator. In some examples, the terminal can receive a network address, determine an associated network port, and send a SIP INVITE message indicating the non-audio, non-video media type. The terminal can then exchange data on the network port with a peer network terminal.
    Type: Application
    Filed: May 10, 2021
    Publication date: October 21, 2021
    Inventors: Paul Bongaarts, Mallika Deshpande, Grant Morgan Castle, Otto Fonseca Escudero, Andrew Gapin, Egil Gronstad, Kirti Krishnan, Salvador Mendoza
  • Patent number: 11109293
    Abstract: A first access node of a first wireless access network receives, via a first entry node of the first network, a service-request message from a terminal registered with the first network. The first access node requests first network-capacity information associated with the first wireless access network from the first entry node, and second network-capacity information associated with a second wireless access network from a second access node of the second network. The first access node selects a target access network based on the service-request message and the first and second network-capacity information. The first access node, in response to a selection of the first wireless access network, sends a service-reply message to the first entry node. The first access node, in response to a selection of the second wireless access network, triggers a handover of the terminal to the second wireless access network.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: August 31, 2021
    Assignee: T-Mobile USA, Inc.
    Inventors: Egil Gronstad, Karunakalage Viraj Rakitha Silva, Brian Allan Olsen, Kun Lu, Ming Shan Kwok, Salvador Mendoza, John Humbert, Jun Liu, Alan Denis MacDonald, Christopher H. Joul, Neng-Tsann Ueng
  • Patent number: 11102691
    Abstract: A first access node of a first wireless access network receives, via a first entry node of the first network, a service-request message from a terminal registered with the first network. The first access node requests first network-capacity information associated with the first wireless access network from the first entry node, and second network-capacity information associated with a second wireless access network from a second access node of the second network. The first access node selects a target access network based on the service-request message and the first and second network-capacity information. The first access node, in response to a selection of the first wireless access network, sends a service-reply message to the first entry node. The first access node, in response to a selection of the second wireless access network, triggers a handover of the terminal to the second wireless access network.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: August 24, 2021
    Assignee: T-Mobile USA, Inc.
    Inventors: Egil Gronstad, Karunakalage Viraj Rakitha Silva, Brian Allan Olsen, Kun Lu, Ming Shan Kwok, Salvador Mendoza, John Humbert, Jun Liu, Alan Denis MacDonald, Christopher H. Joul, Neng-Tsann Ueng
  • Patent number: 11089527
    Abstract: An access network can allocate a bearer for a network service associated with a quality-of-service (QoS) value (QV) and a retention-priority value (RPV), and determine a bearer ID for the service based on the QV, the RPV, and a supplemental priority value (SPV) different from the QV and from the RPV. Upon handover of a terminal, session(s) carried by a bearer allocated by the terminal can be terminated. That bearer can be selected using IDs of the bearers and a comparison function that, given two bearer IDs, determines which respective bearer should be terminated before the other. Upon handover of a terminal to an access network supporting fewer bearers per terminal than the terminal has allocated, a network node can select a bearer based on respective QVs and RPVs of a set of allocated bearers. The network node can deallocate the selected bearer.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: August 10, 2021
    Assignee: T-Mobile USA, Inc.
    Inventors: Kun Lu, Boris Antsev, Terri Brooks, Egil Gronstad, John Humbert, Alan Denis MacDonald, Salvador Mendoza, Scott Francis Migaldi, Gary Jones, Christopher H. Joul, Jun Liu, Ming Shan Kwok, Karunakalage Viraj Rakitha Silva, Neng-Tsann Ueng
  • Patent number: 11076436
    Abstract: A core network element, such as a PCRF and/or an MME, can determine that a Quality of Service (QoS) Class Indicator (QCI) of particular bearer set up between the core network and user equipment (UE) should be changed to a new QCI. When a control node, such as the MME, determines that no teardown delay conditions are met, the control node can send a bearer release message to a base station that instructs the base station to tear down all bearers for the UE, even if they are in use. In a dual connectivity arrangement, such as a E-UTRAN New Radio-Dual Connectivity (EN-DC) configuration, the base station can instruct a secondary base station to also release all bearers for the UE. The control node can instruct the base station to reestablish the particular bearer with the new QCI when the base station reestablishes the bearers for the UE.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: July 27, 2021
    Assignee: T-Mobile USA, Inc.
    Inventors: Kun Lu, Jun Liu, Christopher H. Joul, Karunakalage Viraj Rakitha Silva, Suresh Thanneeru, Salvador Mendoza, Rahul Pal, Egil Gronstad, Alan Denis MacDonald, Kunal Barawkar
  • Patent number: 11057811
    Abstract: When using Dual Connectivity in a Non-Standalone Architecture cellular communication system, a data bearer may be steered through a Long-Term Evolution (LTE) base station or a New Radio (NR) base station. Each bearer is assigned a combination of Quality of Service (QoS) values corresponding to the service type that the bearer is supporting. For example, each different service type may be assigned a combination of a QoS Class Identifier and an Allocation and Retention Priority parameter value. Each combination is also associated with a radio access technology such as LTE radio access technology or NR radio access technology. When NR communications are available between a network core and a communication device, and if the bearer's combination of QoS values has been associated with NR, bearer data is routed through an NR base station. Otherwise, the bearer data is routed through the LTE base station.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: July 6, 2021
    Assignee: T-Mobile USA, Inc.
    Inventors: Kun Lu, Ming Shan Kwok, Salvador Mendoza, Alan Denis MacDonald, Jun Liu, Egil Gronstad, Karunakalage Viraj Rakitha Silva, Suresh Thanneeru
  • Publication number: 20210144632
    Abstract: Systems, devices, and techniques described herein relate to user plane system selection based on latency in mobile networks. In particular, the systems, devices, and techniques can be implemented in fifth generation (5G) mobile networks to provide selection of a user plane function (UPF) based on latency. The UPF can measure a latency toward an access network and provide an indication of the latency to a policy control function (PCF). The PCF can select the UPF based on the indication and can request the UPF to provide services to a user equipment (UE) originating a priority request. In response, the UPF can provide services to the UE.
    Type: Application
    Filed: January 20, 2021
    Publication date: May 13, 2021
    Inventors: Suliman Albasheir, Salvador Mendoza
  • Patent number: 11005715
    Abstract: A telecommunication system can include routing devices, a bearer-management device, and a policy-management device. The bearer-management device can receive a request from a terminal to create a specialized bearer (SB) for a non-audio, non-video media type. The bearer-management device can determine that the request is associated with an authorized user, and then send a setup message comprising a Quality of Service (QoS) indicator to the policy-management device. The policy-management device can create the SB permitting data exchange between the terminal and a routing device. The SB can have QoS characteristics associated with the QoS indicator. In some examples, the terminal can receive a network address, determine an associated network port, and send a SIP INVITE message indicating the non-audio, non-video media type. The terminal can then exchange data on the network port with a peer network terminal.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: May 11, 2021
    Assignee: T-Moblle USA, Inc.
    Inventors: Paul Bongaarts, Mallika Deshpande, Grant Morgan Castle, Otto Fonseca Escudero, Andrew Gapin, Egil Gronstad, Kirti Krishnan, Salvador Mendoza
  • Publication number: 20210099390
    Abstract: Policy based dual connectivity traffic steering is described herein. A master Long-Term Evolution (LTE) base station may operate in conjunction with a secondary New Radio (NR) base station to provide dual connectivity to user equipment (UE) operating in an environment. The LTE base station can steer traffic between the LTE base station and the NR base station based at least in part on policy information received at the LTE base station. The policy information can indicate, for a particular UE and for a particular Quality of Service (QoS) Class Identifier (QCI), whether the LTE base station can transfer a communication to the NR base station. Thus, traffic steering determinations can be based on the policy information, quality identifiers, device capability, signal strength(s), load level(s), and the like, thereby providing a flexible framework for steering wireless traffic in a dual connectivity environment.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Suresh Thanneeru, Salvador Mendoza